retrain.py 5.9 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import time
from argparse import ArgumentParser

import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter

import datasets
import utils
from model import CNN
from nni.nas.pytorch.utils import AverageMeter
from nni.retiarii import fixed_arch

logger = logging.getLogger('nni')


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
writer = SummaryWriter()


def train(config, train_loader, model, optimizer, criterion, epoch):
    top1 = AverageMeter("top1")
    top5 = AverageMeter("top5")
    losses = AverageMeter("losses")

    cur_step = epoch * len(train_loader)
    cur_lr = optimizer.param_groups[0]["lr"]
    logger.info("Epoch %d LR %.6f", epoch, cur_lr)
    writer.add_scalar("lr", cur_lr, global_step=cur_step)

    model.train()

    for step, (x, y) in enumerate(train_loader):
        x, y = x.to(device, non_blocking=True), y.to(device, non_blocking=True)
        bs = x.size(0)

        optimizer.zero_grad()
        logits, aux_logits = model(x)
        loss = criterion(logits, y)
        if config.aux_weight > 0.:
            loss += config.aux_weight * criterion(aux_logits, y)
        loss.backward()
        # gradient clipping
        nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
        optimizer.step()

        accuracy = utils.accuracy(logits, y, topk=(1, 5))
        losses.update(loss.item(), bs)
        top1.update(accuracy["acc1"], bs)
        top5.update(accuracy["acc5"], bs)
        writer.add_scalar("loss/train", loss.item(), global_step=cur_step)
        writer.add_scalar("acc1/train", accuracy["acc1"], global_step=cur_step)
        writer.add_scalar("acc5/train", accuracy["acc5"], global_step=cur_step)

        if step % config.log_frequency == 0 or step == len(train_loader) - 1:
            logger.info(
                "Train: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
                "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
                    epoch + 1, config.epochs, step, len(train_loader) - 1, losses=losses,
                    top1=top1, top5=top5))

        cur_step += 1

    logger.info("Train: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch + 1, config.epochs, top1.avg))


def validate(config, valid_loader, model, criterion, epoch, cur_step):
    top1 = AverageMeter("top1")
    top5 = AverageMeter("top5")
    losses = AverageMeter("losses")

    model.eval()

    with torch.no_grad():
        for step, (X, y) in enumerate(valid_loader):
            X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
            bs = X.size(0)

            logits = model(X)
            loss = criterion(logits, y)

            accuracy = utils.accuracy(logits, y, topk=(1, 5))
            losses.update(loss.item(), bs)
            top1.update(accuracy["acc1"], bs)
            top5.update(accuracy["acc5"], bs)

            if step % config.log_frequency == 0 or step == len(valid_loader) - 1:
                logger.info(
                    "Valid: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
                    "Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
                        epoch + 1, config.epochs, step, len(valid_loader) - 1, losses=losses,
                        top1=top1, top5=top5))

    writer.add_scalar("loss/test", losses.avg, global_step=cur_step)
    writer.add_scalar("acc1/test", top1.avg, global_step=cur_step)
    writer.add_scalar("acc5/test", top5.avg, global_step=cur_step)

    logger.info("Valid: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch + 1, config.epochs, top1.avg))

    return top1.avg


if __name__ == "__main__":
    parser = ArgumentParser("darts")
    parser.add_argument("--layers", default=20, type=int)
    parser.add_argument("--batch-size", default=96, type=int)
    parser.add_argument("--log-frequency", default=10, type=int)
    parser.add_argument("--epochs", default=600, type=int)
    parser.add_argument("--aux-weight", default=0.4, type=float)
    parser.add_argument("--drop-path-prob", default=0.2, type=float)
    parser.add_argument("--workers", default=4)
    parser.add_argument("--grad-clip", default=5., type=float)
    parser.add_argument("--arc-checkpoint", default="./checkpoints/epoch_0.json")

    args = parser.parse_args()
    dataset_train, dataset_valid = datasets.get_dataset("cifar10", cutout_length=16)

    with fixed_arch(args.arc_checkpoint):
        model = CNN(32, 3, 36, 10, args.layers, auxiliary=True)
    criterion = nn.CrossEntropyLoss()

    model.to(device)
    criterion.to(device)

    optimizer = torch.optim.SGD(model.parameters(), 0.025, momentum=0.9, weight_decay=3.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, eta_min=1E-6)

    train_loader = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True)
    valid_loader = torch.utils.data.DataLoader(dataset_valid,
                                               batch_size=args.batch_size,
                                               shuffle=False,
                                               num_workers=args.workers,
                                               pin_memory=True)

    best_top1 = 0.
    for epoch in range(args.epochs):
        drop_prob = args.drop_path_prob * epoch / args.epochs
        model.drop_path_prob(drop_prob)

        # training
        train(args, train_loader, model, optimizer, criterion, epoch)

        # validation
        cur_step = (epoch + 1) * len(train_loader)
        top1 = validate(args, valid_loader, model, criterion, epoch, cur_step)
        best_top1 = max(best_top1, top1)

        lr_scheduler.step()

    logger.info("Final best Prec@1 = {:.4%}".format(best_top1))