base_ops.py 4.88 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
import torch.nn as nn


OPS_WITH_STRIDE = {
    'none': lambda C_in, C_out, stride: Zero(C_in, C_out, stride),
    'avg_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'avg'),
    'max_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'max'),
    'conv_3x3': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3, 3), (stride, stride), (1, 1), (1, 1)),
    'conv_1x1': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1, 1), (stride, stride), (0, 0), (1, 1)),
    'skip_connect': lambda C_in, C_out, stride: nn.Identity() if stride == 1 and C_in == C_out
    else FactorizedReduce(C_in, C_out, stride),
}

PRIMITIVES = ['none', 'skip_connect', 'conv_1x1', 'conv_3x3', 'avg_pool_3x3']


class ReLUConvBN(nn.Module):
    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
        super(ReLUConvBN, self).__init__()
        self.op = nn.Sequential(
            nn.ReLU(inplace=False),
            nn.Conv2d(C_in, C_out, kernel_size, stride=stride,
                      padding=padding, dilation=dilation, bias=False),
            nn.BatchNorm2d(C_out)
        )

    def forward(self, x):
        return self.op(x)


class SepConv(nn.Module):
    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation):
        super(SepConv, self).__init__()
        self.op = nn.Sequential(
            nn.ReLU(inplace=False),
            nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride,
                      padding=padding, dilation=dilation, groups=C_in, bias=False),
            nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False),
            nn.BatchNorm2d(C_out),
        )

    def forward(self, x):
        return self.op(x)


class Pooling(nn.Module):
    def __init__(self, C_in, C_out, stride, mode):
        super(Pooling, self).__init__()
        if C_in == C_out:
            self.preprocess = None
        else:
            self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1)
        if mode == 'avg':
            self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False)
        elif mode == 'max':
            self.op = nn.MaxPool2d(3, stride=stride, padding=1)
        else:
            raise ValueError('Invalid mode={:} in Pooling'.format(mode))

    def forward(self, x):
        if self.preprocess:
            x = self.preprocess(x)
        return self.op(x)


class Zero(nn.Module):
    def __init__(self, C_in, C_out, stride):
        super(Zero, self).__init__()
        self.C_in = C_in
        self.C_out = C_out
        self.stride = stride
        self.is_zero = True

    def forward(self, x):
        if self.C_in == self.C_out:
            if self.stride == 1:
                return x.mul(0.)
            else:
                return x[:, :, ::self.stride, ::self.stride].mul(0.)
        else:
            shape = list(x.shape)
            shape[1] = self.C_out
            zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device)
            return zeros


class FactorizedReduce(nn.Module):
    def __init__(self, C_in, C_out, stride):
        super(FactorizedReduce, self).__init__()
        self.stride = stride
        self.C_in = C_in
        self.C_out = C_out
        self.relu = nn.ReLU(inplace=False)
        if stride == 2:
            C_outs = [C_out // 2, C_out - C_out // 2]
            self.convs = nn.ModuleList()
            for i in range(2):
                self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False))
            self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0)
        else:
            raise ValueError('Invalid stride : {:}'.format(stride))
        self.bn = nn.BatchNorm2d(C_out)

    def forward(self, x):
        x = self.relu(x)
        y = self.pad(x)
        out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1)
        out = self.bn(out)
        return out


class ResNetBasicblock(nn.Module):
    def __init__(self, inplanes, planes, stride):
        super(ResNetBasicblock, self).__init__()
        assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride)
        self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1)
        self.conv_b = ReLUConvBN(planes, planes, 3, 1, 1, 1)
        if stride == 2:
            self.downsample = nn.Sequential(
                nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
                nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
        elif inplanes != planes:
            self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1)
        else:
            self.downsample = None
        self.in_dim = inplanes
        self.out_dim = planes
        self.stride = stride
        self.num_conv = 2

    def forward(self, inputs):
        basicblock = self.conv_a(inputs)
        basicblock = self.conv_b(basicblock)

        if self.downsample is not None:
            inputs = self.downsample(inputs)  # residual
        return inputs + basicblock