ops.py 7.24 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import torch
import torch.nn.functional as F
from torch import nn

from utils import get_length, INF


class Mask(nn.Module):
    def forward(self, seq, mask):
        # seq: (N, C, L)
        # mask: (N, L)
        seq_mask = torch.unsqueeze(mask, 2)
        seq_mask = torch.transpose(seq_mask.repeat(1, 1, seq.size()[1]), 1, 2)
        return seq.where(torch.eq(seq_mask, 1), torch.zeros_like(seq))


class BatchNorm(nn.Module):
    def __init__(self, num_features, pre_mask, post_mask, eps=1e-5, decay=0.9, affine=True):
        super(BatchNorm, self).__init__()
        self.mask_opt = Mask()
        self.pre_mask = pre_mask
        self.post_mask = post_mask
        self.bn = nn.BatchNorm1d(num_features, eps=eps, momentum=1.0 - decay, affine=affine)

    def forward(self, seq, mask):
        if self.pre_mask:
            seq = self.mask_opt(seq, mask)
        seq = self.bn(seq)
        if self.post_mask:
            seq = self.mask_opt(seq, mask)
        return seq


class ConvBN(nn.Module):
    def __init__(self, kernal_size, in_channels, out_channels, cnn_keep_prob,
                 pre_mask, post_mask, with_bn=True, with_relu=True):
        super(ConvBN, self).__init__()
        self.mask_opt = Mask()
        self.pre_mask = pre_mask
        self.post_mask = post_mask
        self.with_bn = with_bn
        self.with_relu = with_relu
        self.conv = nn.Conv1d(in_channels, out_channels, kernal_size, 1, bias=True, padding=(kernal_size - 1) // 2)
        self.dropout = nn.Dropout(p=(1 - cnn_keep_prob))

        if with_bn:
            self.bn = BatchNorm(out_channels, not post_mask, True)

        if with_relu:
            self.relu = nn.ReLU()

    def forward(self, seq, mask):
        if self.pre_mask:
            seq = self.mask_opt(seq, mask)
        seq = self.conv(seq)
        if self.post_mask:
            seq = self.mask_opt(seq, mask)
        if self.with_bn:
            seq = self.bn(seq, mask)
        if self.with_relu:
            seq = self.relu(seq)
        seq = self.dropout(seq)
        return seq


class AvgPool(nn.Module):
    def __init__(self, kernal_size, pre_mask, post_mask):
        super(AvgPool, self).__init__()
        self.avg_pool = nn.AvgPool1d(kernal_size, 1, padding=(kernal_size - 1) // 2)
        self.pre_mask = pre_mask
        self.post_mask = post_mask
        self.mask_opt = Mask()

    def forward(self, seq, mask):
        if self.pre_mask:
            seq = self.mask_opt(seq, mask)
        seq = self.avg_pool(seq)
        if self.post_mask:
            seq = self.mask_opt(seq, mask)
        return seq


class MaxPool(nn.Module):
    def __init__(self, kernal_size, pre_mask, post_mask):
        super(MaxPool, self).__init__()
        self.max_pool = nn.MaxPool1d(kernal_size, 1, padding=(kernal_size - 1) // 2)
        self.pre_mask = pre_mask
        self.post_mask = post_mask
        self.mask_opt = Mask()

    def forward(self, seq, mask):
        if self.pre_mask:
            seq = self.mask_opt(seq, mask)
        seq = self.max_pool(seq)
        if self.post_mask:
            seq = self.mask_opt(seq, mask)
        return seq


class Attention(nn.Module):
    def __init__(self, num_units, num_heads, keep_prob, is_mask):
        super(Attention, self).__init__()
        self.num_heads = num_heads
        self.keep_prob = keep_prob

        self.linear_q = nn.Linear(num_units, num_units)
        self.linear_k = nn.Linear(num_units, num_units)
        self.linear_v = nn.Linear(num_units, num_units)

        self.bn = BatchNorm(num_units, True, is_mask)
        self.dropout = nn.Dropout(p=1 - self.keep_prob)

    def forward(self, seq, mask):
        in_c = seq.size()[1]
        seq = torch.transpose(seq, 1, 2)  # (N, L, C)
        queries = seq
        keys = seq
        num_heads = self.num_heads

        # T_q = T_k = L
        Q = F.relu(self.linear_q(seq))  # (N, T_q, C)
        K = F.relu(self.linear_k(seq))  # (N, T_k, C)
        V = F.relu(self.linear_v(seq))  # (N, T_k, C)

        # Split and concat
        Q_ = torch.cat(torch.split(Q, in_c // num_heads, dim=2), dim=0)  # (h*N, T_q, C/h)
        K_ = torch.cat(torch.split(K, in_c // num_heads, dim=2), dim=0)  # (h*N, T_k, C/h)
        V_ = torch.cat(torch.split(V, in_c // num_heads, dim=2), dim=0)  # (h*N, T_k, C/h)

        # Multiplication
        outputs = torch.matmul(Q_, K_.transpose(1, 2))  # (h*N, T_q, T_k)
        # Scale
        outputs = outputs / (K_.size()[-1] ** 0.5)
        # Key Masking
        key_masks = mask.repeat(num_heads, 1)  # (h*N, T_k)
        key_masks = torch.unsqueeze(key_masks, 1)  # (h*N, 1, T_k)
        key_masks = key_masks.repeat(1, queries.size()[1], 1)  # (h*N, T_q, T_k)

        paddings = torch.ones_like(outputs) * (-INF)  # extremely small value
        outputs = torch.where(torch.eq(key_masks, 0), paddings, outputs)

        query_masks = mask.repeat(num_heads, 1)  # (h*N, T_q)
        query_masks = torch.unsqueeze(query_masks, -1)  # (h*N, T_q, 1)
        query_masks = query_masks.repeat(1, 1, keys.size()[1]).float()  # (h*N, T_q, T_k)

        att_scores = F.softmax(outputs, dim=-1) * query_masks  # (h*N, T_q, T_k)
        att_scores = self.dropout(att_scores)

        # Weighted sum
        x_outputs = torch.matmul(att_scores, V_)  # (h*N, T_q, C/h)
        # Restore shape
        x_outputs = torch.cat(
            torch.split(x_outputs, x_outputs.size()[0] // num_heads, dim=0),
            dim=2)  # (N, T_q, C)

        x = torch.transpose(x_outputs, 1, 2)  # (N, C, L)
        x = self.bn(x, mask)

        return x


class RNN(nn.Module):
    def __init__(self, hidden_size, output_keep_prob):
        super(RNN, self).__init__()
        self.hidden_size = hidden_size
        self.bid_rnn = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional=True)
        self.output_keep_prob = output_keep_prob

        self.out_dropout = nn.Dropout(p=(1 - self.output_keep_prob))

    def forward(self, seq, mask):
        # seq: (N, C, L)
        # mask: (N, L)
        max_len = seq.size()[2]
        length = get_length(mask)
        seq = torch.transpose(seq, 1, 2)  # to (N, L, C)
        packed_seq = nn.utils.rnn.pack_padded_sequence(seq, length, batch_first=True,
                                                       enforce_sorted=False)
        outputs, _ = self.bid_rnn(packed_seq)
        outputs = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True,
                                                   total_length=max_len)[0]
        outputs = outputs.view(-1, max_len, 2, self.hidden_size).sum(2)  # (N, L, C)
        outputs = self.out_dropout(outputs)  # output dropout
        return torch.transpose(outputs, 1, 2)  # back to: (N, C, L)


class LinearCombine(nn.Module):
    def __init__(self, layers_num, trainable=True, input_aware=False, word_level=False):
        super(LinearCombine, self).__init__()
        self.input_aware = input_aware
        self.word_level = word_level

        if input_aware:
            raise NotImplementedError("Input aware is not supported.")
        self.w = nn.Parameter(torch.full((layers_num, 1, 1, 1), 1.0 / layers_num),
                              requires_grad=trainable)

    def forward(self, seq):
        nw = F.softmax(self.w, dim=0)
        seq = torch.mul(seq, nw)
        seq = torch.sum(seq, dim=0)
        return seq