activation_pruning_torch.py 6.02 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for supported ActivationAPoZRank and ActivationMeanRank pruning algorithms.
In this example, we show the end-to-end pruning process: pre-training -> pruning -> fine-tuning.
Note that pruners use masks to simulate the real pruning. In order to obtain a real compressed model, model speedup is required.

'''
import argparse
import sys

import torch
from torchvision import datasets, transforms
from torch.optim.lr_scheduler import MultiStepLR

import nni
from nni.compression.pytorch import ModelSpeedup
from nni.compression.pytorch.utils import count_flops_params
from nni.compression.pytorch.pruning import ActivationAPoZRankPruner, ActivationMeanRankPruner

from pathlib import Path
sys.path.append(str(Path(__file__).absolute().parents[1] / 'models'))
from cifar10.vgg import VGG

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
g_epoch = 0

train_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=True, transform=transforms.Compose([
        transforms.RandomHorizontalFlip(),
        transforms.RandomCrop(32, 4),
        transforms.ToTensor(),
        normalize,
    ]), download=True),
    batch_size=128, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.CIFAR10('./data', train=False, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])),
    batch_size=128, shuffle=False)

def trainer(model, optimizer, criterion):
    global g_epoch
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx and batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                g_epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
    g_epoch += 1

def evaluator(model):
    model.eval()
    correct = 0.0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    acc = 100 * correct / len(test_loader.dataset)
    print('Accuracy: {}%\n'.format(acc))
    return acc

def optimizer_scheduler_generator(model, _lr=0.1, _momentum=0.9, _weight_decay=5e-4, total_epoch=160):
    optimizer = torch.optim.SGD(model.parameters(), lr=_lr, momentum=_momentum, weight_decay=_weight_decay)
    scheduler = MultiStepLR(optimizer, milestones=[int(total_epoch * 0.5), int(total_epoch * 0.75)], gamma=0.1)
    return optimizer, scheduler

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='PyTorch Example for model comporession')
    parser.add_argument('--pruner', type=str, default='apoz',
                        choices=['apoz', 'mean'],
                        help='pruner to use')
    parser.add_argument('--pretrain-epochs', type=int, default=20,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--fine-tune-epochs', type=int, default=20,
                        help='number of epochs to fine tune the model')
    args = parser.parse_args()

    print('\n' + '=' * 50 + ' START TO TRAIN THE MODEL ' + '=' * 50)
    model = VGG().to(device)
    optimizer, scheduler = optimizer_scheduler_generator(model, total_epoch=args.pretrain_epochs)
    criterion = torch.nn.CrossEntropyLoss()
    pre_best_acc = 0.0
    best_state_dict = None

    for i in range(args.pretrain_epochs):
        trainer(model, optimizer, criterion)
        scheduler.step()
        acc = evaluator(model)
        if acc > pre_best_acc:
            pre_best_acc = acc
            best_state_dict = model.state_dict()
    print("Best accuracy: {}".format(pre_best_acc))
    model.load_state_dict(best_state_dict)
    pre_flops, pre_params, _ = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device))
    g_epoch = 0

    # Start to prune and speedup
    print('\n' + '=' * 50 + ' START TO PRUNE THE BEST ACCURACY PRETRAINED MODEL ' + '=' * 50)
    config_list = [{
        'total_sparsity': 0.5,
        'op_types': ['Conv2d'],
    }]

    # make sure you have used nni.trace to wrap the optimizer class before initialize
    traced_optimizer = nni.trace(torch.optim.SGD)(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
    if 'apoz' in args.pruner:
        pruner = ActivationAPoZRankPruner(model, config_list, trainer, traced_optimizer, criterion, training_batches=20)
    else:
        pruner = ActivationMeanRankPruner(model, config_list, trainer, traced_optimizer, criterion, training_batches=20)
    _, masks = pruner.compress()
    pruner.show_pruned_weights()
    pruner._unwrap_model()
    ModelSpeedup(model, dummy_input=torch.rand([10, 3, 32, 32]).to(device), masks_file=masks).speedup_model()
    print('\n' + '=' * 50 + ' EVALUATE THE MODEL AFTER SPEEDUP ' + '=' * 50)
    evaluator(model)

    # Optimizer used in the pruner might be patched, so recommend to new an optimizer for fine-tuning stage.
    print('\n' + '=' * 50 + ' START TO FINE TUNE THE MODEL ' + '=' * 50)
    optimizer, scheduler = optimizer_scheduler_generator(model, _lr=0.01, total_epoch=args.fine_tune_epochs)

    best_acc = 0.0
    g_epoch = 0
    for i in range(args.fine_tune_epochs):
        trainer(model, optimizer, criterion)
        scheduler.step()
        best_acc = max(evaluator(model), best_acc)
    flops, params, results = count_flops_params(model, torch.randn([128, 3, 32, 32]).to(device))
    print(f'Pretrained model FLOPs {pre_flops/1e6:.2f} M, #Params: {pre_params/1e6:.2f}M, Accuracy: {pre_best_acc: .2f}%')
    print(f'Finetuned model FLOPs {flops/1e6:.2f} M, #Params: {params/1e6:.2f}M, Accuracy: {best_acc: .2f}%')