pruning_bert_glue.rst 26.7 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/pruning_bert_glue.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_pruning_bert_glue.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_pruning_bert_glue.py:


Pruning Bert on Task MNLI
=========================

Workable Pruning Process
------------------------

Here we show an effective transformer pruning process that NNI team has tried, and users can use NNI to discover better processes.

The entire pruning process can be divided into the following steps:

1. Finetune the pre-trained model on the downstream task. From our experience,
   the final performance of pruning on the finetuned model is better than pruning directly on the pre-trained model.
   At the same time, the finetuned model obtained in this step will also be used as the teacher model for the following
   distillation training.
2. Pruning the attention layer at first. Here we apply block-sparse on attention layer weight,
   and directly prune the head (condense the weight) if the head was fully masked.
   If the head was partially masked, we will not prune it and recover its weight.
3. Retrain the head-pruned model with distillation. Recover the model precision before pruning FFN layer.
4. Pruning the FFN layer. Here we apply the output channels pruning on the 1st FFN layer,
   and the 2nd FFN layer input channels will be pruned due to the pruning of 1st layer output channels.
5. Retrain the final pruned model with distillation.

During the process of pruning transformer, we gained some of the following experiences:

* We using :ref:`movement-pruner` in step 2 and :ref:`taylor-fo-weight-pruner` in step 4. :ref:`movement-pruner` has good performance on attention layers,
  and :ref:`taylor-fo-weight-pruner` method has good performance on FFN layers. These two pruners are all some kinds of gradient-based pruning algorithms,
  we also try weight-based pruning algorithms like :ref:`l1-norm-pruner`, but it doesn't seem to work well in this scenario.
* Distillation is a good way to recover model precision. In terms of results, usually 1~2% improvement in accuracy can be achieved when we prune bert on mnli task.
* It is necessary to gradually increase the sparsity rather than reaching a very high sparsity all at once.

Experiment
----------

The complete pruning process will take about 8 hours on one A100.

Preparation
^^^^^^^^^^^

This section is mainly to get a finetuned model on the downstream task.
If you are familiar with how to finetune Bert on GLUE dataset, you can skip this section.

.. note::

    Please set ``dev_mode`` to ``False`` to run this tutorial. Here ``dev_mode`` is ``True`` by default is for generating documents.

.. GENERATED FROM PYTHON SOURCE LINES 48-51

.. code-block:: default


    dev_mode = True








.. GENERATED FROM PYTHON SOURCE LINES 52-53

Some basic setting.

.. GENERATED FROM PYTHON SOURCE LINES 53-84

.. code-block:: default


    from pathlib import Path
    from typing import Callable, Dict

    pretrained_model_name_or_path = 'bert-base-uncased'
    task_name = 'mnli'
    experiment_id = 'pruning_bert_mnli'

    # heads_num and layers_num should align with pretrained_model_name_or_path
    heads_num = 12
    layers_num = 12

    # used to save the experiment log
    log_dir = Path(f'./pruning_log/{pretrained_model_name_or_path}/{task_name}/{experiment_id}')
    log_dir.mkdir(parents=True, exist_ok=True)

    # used to save the finetuned model and share between different experiemnts with same pretrained_model_name_or_path and task_name
    model_dir = Path(f'./models/{pretrained_model_name_or_path}/{task_name}')
    model_dir.mkdir(parents=True, exist_ok=True)

    # used to save GLUE data
    data_dir = Path(f'./data')
    data_dir.mkdir(parents=True, exist_ok=True)

    # set seed
    from transformers import set_seed
    set_seed(1024)

    import torch
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')








.. GENERATED FROM PYTHON SOURCE LINES 85-86

Create dataloaders.

.. GENERATED FROM PYTHON SOURCE LINES 86-152

.. code-block:: default


    from torch.utils.data import DataLoader

    from datasets import load_dataset
    from transformers import BertTokenizerFast, DataCollatorWithPadding

    task_to_keys = {
        'cola': ('sentence', None),
        'mnli': ('premise', 'hypothesis'),
        'mrpc': ('sentence1', 'sentence2'),
        'qnli': ('question', 'sentence'),
        'qqp': ('question1', 'question2'),
        'rte': ('sentence1', 'sentence2'),
        'sst2': ('sentence', None),
        'stsb': ('sentence1', 'sentence2'),
        'wnli': ('sentence1', 'sentence2'),
    }

    def prepare_dataloaders(cache_dir=data_dir, train_batch_size=32, eval_batch_size=32):
        tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path)
        sentence1_key, sentence2_key = task_to_keys[task_name]
        data_collator = DataCollatorWithPadding(tokenizer)

        # used to preprocess the raw data
        def preprocess_function(examples):
            # Tokenize the texts
            args = (
                (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
            )
            result = tokenizer(*args, padding=False, max_length=128, truncation=True)

            if 'label' in examples:
                # In all cases, rename the column to labels because the model will expect that.
                result['labels'] = examples['label']
            return result

        raw_datasets = load_dataset('glue', task_name, cache_dir=cache_dir)
        for key in list(raw_datasets.keys()):
            if 'test' in key:
                raw_datasets.pop(key)

        processed_datasets = raw_datasets.map(preprocess_function, batched=True,
                                              remove_columns=raw_datasets['train'].column_names)

        train_dataset = processed_datasets['train']
        if task_name == 'mnli':
            validation_datasets = {
                'validation_matched': processed_datasets['validation_matched'],
                'validation_mismatched': processed_datasets['validation_mismatched']
            }
        else:
            validation_datasets = {
                'validation': processed_datasets['validation']
            }

        train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=train_batch_size)
        validation_dataloaders = {
            val_name: DataLoader(val_dataset, collate_fn=data_collator, batch_size=eval_batch_size) \
                for val_name, val_dataset in validation_datasets.items()
        }

        return train_dataloader, validation_dataloaders


    train_dataloader, validation_dataloaders = prepare_dataloaders()




.. GENERATED FROM PYTHON SOURCE LINES 153-154

Training function & evaluation function.

.. GENERATED FROM PYTHON SOURCE LINES 154-277

.. code-block:: default


    import functools
    import time

    import torch.nn.functional as F
    from datasets import load_metric
    from transformers.modeling_outputs import SequenceClassifierOutput


    def training(model: torch.nn.Module,
                 optimizer: torch.optim.Optimizer,
                 criterion: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
                 lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
                 max_steps: int = None,
                 max_epochs: int = None,
                 train_dataloader: DataLoader = None,
                 distillation: bool = False,
                 teacher_model: torch.nn.Module = None,
                 distil_func: Callable = None,
                 log_path: str = Path(log_dir) / 'training.log',
                 save_best_model: bool = False,
                 save_path: str = None,
                 evaluation_func: Callable = None,
                 eval_per_steps: int = 1000,
                 device=None):

        assert train_dataloader is not None

        model.train()
        if teacher_model is not None:
            teacher_model.eval()
        current_step = 0
        best_result = 0

        total_epochs = max_steps // len(train_dataloader) + 1 if max_steps else max_epochs if max_epochs else 3
        total_steps = max_steps if max_steps else total_epochs * len(train_dataloader)

        print(f'Training {total_epochs} epochs, {total_steps} steps...')

        for current_epoch in range(total_epochs):
            for batch in train_dataloader:
                if current_step >= total_steps:
                    return
                batch.to(device)
                outputs = model(**batch)
                loss = outputs.loss

                if distillation:
                    assert teacher_model is not None
                    with torch.no_grad():
                        teacher_outputs = teacher_model(**batch)
                    distil_loss = distil_func(outputs, teacher_outputs)
                    loss = 0.1 * loss + 0.9 * distil_loss

                loss = criterion(loss, None)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                # per step schedule
                if lr_scheduler:
                    lr_scheduler.step()

                current_step += 1

                if current_step % eval_per_steps == 0 or current_step % len(train_dataloader) == 0:
                    result = evaluation_func(model) if evaluation_func else None
                    with (log_path).open('a+') as f:
                        msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())), current_epoch, current_step, result)
                        f.write(msg)
                    # if it's the best model, save it.
                    if save_best_model and (result is None or best_result < result['default']):
                        assert save_path is not None
                        torch.save(model.state_dict(), save_path)
                        best_result = None if result is None else result['default']


    def distil_loss_func(stu_outputs: SequenceClassifierOutput, tea_outputs: SequenceClassifierOutput, encoder_layer_idxs=[]):
        encoder_hidden_state_loss = []
        for i, idx in enumerate(encoder_layer_idxs[:-1]):
            encoder_hidden_state_loss.append(F.mse_loss(stu_outputs.hidden_states[i], tea_outputs.hidden_states[idx]))
        logits_loss = F.kl_div(F.log_softmax(stu_outputs.logits / 2, dim=-1), F.softmax(tea_outputs.logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)

        distil_loss = 0
        for loss in encoder_hidden_state_loss:
            distil_loss += loss
        distil_loss += logits_loss
        return distil_loss


    def evaluation(model: torch.nn.Module, validation_dataloaders: Dict[str, DataLoader] = None, device=None):
        assert validation_dataloaders is not None
        training = model.training
        model.eval()

        is_regression = task_name == 'stsb'
        metric = load_metric('glue', task_name)

        result = {}
        default_result = 0
        for val_name, validation_dataloader in validation_dataloaders.items():
            for batch in validation_dataloader:
                batch.to(device)
                outputs = model(**batch)
                predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
                metric.add_batch(
                    predictions=predictions,
                    references=batch['labels'],
                )
            result[val_name] = metric.compute()
            default_result += result[val_name].get('f1', result[val_name].get('accuracy', 0))
        result['default'] = default_result / len(result)

        model.train(training)
        return result


    evaluation_func = functools.partial(evaluation, validation_dataloaders=validation_dataloaders, device=device)


    def fake_criterion(loss, _):
        return loss








.. GENERATED FROM PYTHON SOURCE LINES 278-279

Prepare pre-trained model and finetuning on downstream task.

.. GENERATED FROM PYTHON SOURCE LINES 279-320

.. code-block:: default


    from torch.optim import Adam
    from torch.optim.lr_scheduler import LambdaLR
    from transformers import BertForSequenceClassification


    def create_pretrained_model():
        is_regression = task_name == 'stsb'
        num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
        model = BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=num_labels)
        model.bert.config.output_hidden_states = True
        return model


    def create_finetuned_model():
        finetuned_model = create_pretrained_model()
        finetuned_model_state_path = Path(model_dir) / 'finetuned_model_state.pth'

        if finetuned_model_state_path.exists():
            finetuned_model.load_state_dict(torch.load(finetuned_model_state_path, map_location='cpu'))
            finetuned_model.to(device)
        elif dev_mode:
            pass
        else:
            steps_per_epoch = len(train_dataloader)
            training_epochs = 3
            optimizer = Adam(finetuned_model.parameters(), lr=3e-5, eps=1e-8)

            def lr_lambda(current_step: int):
                return max(0.0, float(training_epochs * steps_per_epoch - current_step) / float(training_epochs * steps_per_epoch))

            lr_scheduler = LambdaLR(optimizer, lr_lambda)
            training(finetuned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler,
                     max_epochs=training_epochs, train_dataloader=train_dataloader, log_path=log_dir / 'finetuning_on_downstream.log',
                     save_best_model=True, save_path=finetuned_model_state_path, evaluation_func=evaluation_func, device=device)
        return finetuned_model


    finetuned_model = create_finetuned_model()





.. GENERATED FROM PYTHON SOURCE LINES 321-328

Pruning
^^^^^^^
According to experience, it is easier to achieve good results by pruning the attention part and the FFN part in stages.
Of course, pruning together can also achieve the similar effect, but more parameter adjustment attempts are required.
So in this section, we do pruning in stages.

First, we prune the attention layer with MovementPruner.

.. GENERATED FROM PYTHON SOURCE LINES 328-388

.. code-block:: default


    steps_per_epoch = len(train_dataloader)

    # Set training steps/epochs for pruning.

    if not dev_mode:
        total_epochs = 4
        total_steps = total_epochs * steps_per_epoch
        warmup_steps = 1 * steps_per_epoch
        cooldown_steps = 1 * steps_per_epoch
    else:
        total_epochs = 1
        total_steps = 3
        warmup_steps = 1
        cooldown_steps = 1

    # Initialize evaluator used by MovementPruner.

    import nni
    from nni.algorithms.compression.v2.pytorch import TorchEvaluator

    movement_training = functools.partial(training, train_dataloader=train_dataloader,
                                          log_path=log_dir / 'movement_pruning.log',
                                          evaluation_func=evaluation_func, device=device)
    traced_optimizer = nni.trace(Adam)(finetuned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        if current_step < warmup_steps:
            return float(current_step) / warmup_steps
        return max(0.0, float(total_steps - current_step) / float(total_steps - warmup_steps))

    traced_scheduler = nni.trace(LambdaLR)(traced_optimizer, lr_lambda)
    evaluator = TorchEvaluator(movement_training, traced_optimizer, fake_criterion, traced_scheduler)

    # Apply block-soft-movement pruning on attention layers.
    # Note that block sparse is introduced by `sparse_granularity='auto'`, and only support `bert`, `bart`, `t5` right now.

    from nni.compression.pytorch.pruning import MovementPruner

    config_list = [{
        'op_types': ['Linear'],
        'op_partial_names': ['bert.encoder.layer.{}.attention'.format(i) for i in range(layers_num)],
        'sparsity': 0.1
    }]

    pruner = MovementPruner(model=finetuned_model,
                            config_list=config_list,
                            evaluator=evaluator,
                            training_epochs=total_epochs,
                            training_steps=total_steps,
                            warm_up_step=warmup_steps,
                            cool_down_beginning_step=total_steps - cooldown_steps,
                            regular_scale=10,
                            movement_mode='soft',
                            sparse_granularity='auto')
    _, attention_masks = pruner.compress()
    pruner.show_pruned_weights()

    torch.save(attention_masks, Path(log_dir) / 'attention_masks.pth')




.. GENERATED FROM PYTHON SOURCE LINES 389-393

Load a new finetuned model to do speedup, you can think of this as using the finetuned state to initialize the pruned model weights.
Note that nni speedup don't support replacing attention module, so here we manully replace the attention module.

If the head is entire masked, physically prune it and create config_list for FFN pruning.

.. GENERATED FROM PYTHON SOURCE LINES 393-423

.. code-block:: default


    attention_pruned_model = create_finetuned_model().to(device)
    attention_masks = torch.load(Path(log_dir) / 'attention_masks.pth')

    ffn_config_list = []
    layer_remained_idxs = []
    module_list = []
    for i in range(0, layers_num):
        prefix = f'bert.encoder.layer.{i}.'
        value_mask: torch.Tensor = attention_masks[prefix + 'attention.self.value']['weight']
        head_mask = (value_mask.reshape(heads_num, -1).sum(-1) == 0.)
        head_idxs = torch.arange(len(head_mask))[head_mask].long().tolist()
        print(f'layer {i} prune {len(head_idxs)} head: {head_idxs}')
        if len(head_idxs) != heads_num:
            attention_pruned_model.bert.encoder.layer[i].attention.prune_heads(head_idxs)
            module_list.append(attention_pruned_model.bert.encoder.layer[i])
            # The final ffn weight remaining ratio is the half of the attention weight remaining ratio.
            # This is just an empirical configuration, you can use any other method to determine this sparsity.
            sparsity = 1 - (1 - len(head_idxs) / heads_num) * 0.5
            # here we use a simple sparsity schedule, we will prune ffn in 12 iterations, each iteration prune `sparsity_per_iter`.
            sparsity_per_iter = 1 - (1 - sparsity) ** (1 / 12)
            ffn_config_list.append({
                'op_names': [f'bert.encoder.layer.{len(layer_remained_idxs)}.intermediate.dense'],
                'sparsity': sparsity_per_iter
            })
            layer_remained_idxs.append(i)

    attention_pruned_model.bert.encoder.layer = torch.nn.ModuleList(module_list)
    distil_func = functools.partial(distil_loss_func, encoder_layer_idxs=layer_remained_idxs)




.. GENERATED FROM PYTHON SOURCE LINES 424-425

Retrain the attention pruned model with distillation.

.. GENERATED FROM PYTHON SOURCE LINES 425-451

.. code-block:: default


    if not dev_mode:
        total_epochs = 5
        total_steps = None
        distillation = True
    else:
        total_epochs = 1
        total_steps = 1
        distillation = False

    teacher_model = create_finetuned_model()
    optimizer = Adam(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        return max(0.0, float(total_epochs * steps_per_epoch - current_step) / float(total_epochs * steps_per_epoch))

    lr_scheduler = LambdaLR(optimizer, lr_lambda)
    at_model_save_path = log_dir / 'attention_pruned_model_state.pth'
    training(attention_pruned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler, max_epochs=total_epochs,
             max_steps=total_steps, train_dataloader=train_dataloader, distillation=distillation, teacher_model=teacher_model,
             distil_func=distil_func, log_path=log_dir / 'retraining.log', save_best_model=True, save_path=at_model_save_path,
             evaluation_func=evaluation_func, device=device)

    if not dev_mode:
        attention_pruned_model.load_state_dict(torch.load(at_model_save_path))




.. GENERATED FROM PYTHON SOURCE LINES 452-456

Iterative pruning FFN with TaylorFOWeightPruner in 12 iterations.
Finetuning 3000 steps after each pruning iteration, then finetuning 2 epochs after pruning finished.

NNI will support per-step-pruning-schedule in the future, then can use an pruner to replace the following code.

.. GENERATED FROM PYTHON SOURCE LINES 456-537

.. code-block:: default


    if not dev_mode:
        total_epochs = 7
        total_steps = None
        taylor_pruner_steps = 1000
        steps_per_iteration = 3000
        total_pruning_steps = 36000
        distillation = True
    else:
        total_epochs = 1
        total_steps = 6
        taylor_pruner_steps = 2
        steps_per_iteration = 2
        total_pruning_steps = 4
        distillation = False

    from nni.compression.pytorch.pruning import TaylorFOWeightPruner
    from nni.compression.pytorch.speedup import ModelSpeedup

    distil_training = functools.partial(training, train_dataloader=train_dataloader, distillation=distillation,
                                        teacher_model=teacher_model, distil_func=distil_func, device=device)
    traced_optimizer = nni.trace(Adam)(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)
    evaluator = TorchEvaluator(distil_training, traced_optimizer, fake_criterion)

    current_step = 0
    best_result = 0
    init_lr = 3e-5

    dummy_input = torch.rand(8, 128, 768).to(device)

    attention_pruned_model.train()
    for current_epoch in range(total_epochs):
        for batch in train_dataloader:
            if total_steps and current_step >= total_steps:
                break
            # pruning with TaylorFOWeightPruner & reinitialize optimizer
            if current_step % steps_per_iteration == 0 and current_step < total_pruning_steps:
                check_point = attention_pruned_model.state_dict()
                pruner = TaylorFOWeightPruner(attention_pruned_model, ffn_config_list, evaluator, taylor_pruner_steps)
                _, ffn_masks = pruner.compress()
                renamed_ffn_masks = {}
                # rename the masks keys, because we only speedup the bert.encoder
                for model_name, targets_mask in ffn_masks.items():
                    renamed_ffn_masks[model_name.split('bert.encoder.')[1]] = targets_mask
                pruner._unwrap_model()
                attention_pruned_model.load_state_dict(check_point)
                ModelSpeedup(attention_pruned_model.bert.encoder, dummy_input, renamed_ffn_masks).speedup_model()
                optimizer = Adam(attention_pruned_model.parameters(), lr=init_lr)

            batch.to(device)
            # manually schedule lr
            for params_group in optimizer.param_groups:
                params_group['lr'] = (1 - current_step / (total_epochs * steps_per_epoch)) * init_lr

            outputs = attention_pruned_model(**batch)
            loss = outputs.loss

            # distillation
            if distillation:
                assert teacher_model is not None
                with torch.no_grad():
                    teacher_outputs = teacher_model(**batch)
                distil_loss = distil_func(outputs, teacher_outputs)
                loss = 0.1 * loss + 0.9 * distil_loss

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            current_step += 1

            if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
                result = evaluation_func(attention_pruned_model)
                with (log_dir / 'ffn_pruning.log').open('a+') as f:
                    msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())),
                                                                current_epoch, current_step, result)
                    f.write(msg)
                if current_step >= total_pruning_steps and best_result < result['default']:
                    torch.save(attention_pruned_model, log_dir / 'best_model.pth')
                    best_result = result['default']




.. GENERATED FROM PYTHON SOURCE LINES 538-607

Result
------
The speedup is test on the entire validation dataset with batch size 128 on A100.
We test under two pytorch version and found the latency varying widely.

Setting 1: pytorch 1.12.1

Setting 2: pytorch 1.10.0

.. list-table:: Prune Bert-base-uncased on MNLI
    :header-rows: 1
    :widths: auto

    * - Attention Pruning Method
      - FFN Pruning Method
      - Total Sparsity
      - Accuracy
      - Acc. Drop
      - Speedup (S1)
      - Speedup (S2)
    * -
      -
      - 85.1M (-0.0%)
      - 84.85 / 85.28
      - +0.0 / +0.0
      - 25.60s (x1.00)
      - 8.10s (x1.00)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
      - :ref:`taylor-fo-weight-pruner`
      - 54.1M (-36.43%)
      - 85.38 / 85.41
      - +0.53 / +0.13
      - 17.93s (x1.43)
      - 7.22s (x1.12)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
      - :ref:`taylor-fo-weight-pruner`
      - 37.1M (-56.40%)
      - 84.73 / 85.12
      - -0.12 / -0.16
      - 12.83s (x2.00)
      - 5.61s (x1.44)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
      - :ref:`taylor-fo-weight-pruner`
      - 24.1M (-71.68%)
      - 84.14 / 84.78
      - -0.71 / -0.50
      - 8.93s (x2.87)
      - 4.55s (x1.78)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
      - :ref:`taylor-fo-weight-pruner`
      - 14.3M (-83.20%)
      - 83.26 / 82.96
      - -1.59 / -2.32
      - 5.98s (x4.28)
      - 3.56s (x2.28)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
      - :ref:`taylor-fo-weight-pruner`
      - 9.9M (-88.37%)
      - 82.22 / 82.19
      - -2.63 / -3.09
      - 4.36s (x5.88)
      - 3.12s (x2.60)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
      - :ref:`taylor-fo-weight-pruner`
      - 8.8M (-89.66%)
      - 81.64 / 82.39
      - -3.21 / -2.89
      - 3.88s (x6.60)
      - 2.81s (x2.88)


.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 0 minutes  20.822 seconds)


.. _sphx_glr_download_tutorials_pruning_bert_glue.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: pruning_bert_glue.py <pruning_bert_glue.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: pruning_bert_glue.ipynb <pruning_bert_glue.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_