evaluator.rst 9.65 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
Model Evaluator
===============

A model evaluator is for training and validating each generated model. They are necessary to evaluate the performance of new explored models.

.. _functional-evaluator:

Customize Evaluator with Any Function
-------------------------------------

The simplest way to customize a new evaluator is with :class:`~nni.retiarii.evaluator.FunctionalEvaluator`, which is very easy when training code is already available. Users only need to write a fit function that wraps everything, which usually includes training, validating and testing of a single model. This function takes one positional arguments (``model_cls``) and possible keyword arguments. The keyword arguments (other than ``model_cls``) are fed to :class:`~nni.retiarii.evaluator.FunctionalEvaluator` as its initialization parameters (note that they will be :doc:`serialized <./serialization>`). In this way, users get everything under their control, but expose less information to the framework and as a result, further optimizations like :ref:`CGO <cgo-execution-engine>` might be not feasible. An example is as belows:

.. code-block:: python

    from nni.retiarii.evaluator import FunctionalEvaluator
    from nni.retiarii.experiment.pytorch import RetiariiExperiment

    def fit(model_cls, dataloader):
        model = model_cls()
        train(model, dataloader)
        acc = test(model, dataloader)
        nni.report_final_result(acc)

    # The dataloader will be serialized, thus ``nni.trace`` is needed here.
    # See serialization tutorial for more details.
    evaluator = FunctionalEvaluator(fit, dataloader=nni.trace(DataLoader)(foo, bar))
    experiment = RetiariiExperiment(base_model, evaluator, mutators, strategy)

.. tip::

    When using customized evaluators, if you want to visualize models, you need to export your model and save it into ``$NNI_OUTPUT_DIR/model.onnx`` in your evaluator. An example here:

    .. code-block:: python

        def fit(model_cls):
            model = model_cls()
            onnx_path = Path(os.environ.get('NNI_OUTPUT_DIR', '.')) / 'model.onnx'
            onnx_path.parent.mkdir(exist_ok=True)
            dummy_input = torch.randn(10, 3, 224, 224)
            torch.onnx.export(model, dummy_input, onnx_path)
            # the rest of training code here

    If the conversion is successful, the model will be able to be visualized with powerful tools `Netron <https://netron.app/>`__.

Use Evaluators to Train and Evaluate Models
-------------------------------------------

Users can use evaluators to train or evaluate a single, concrete architecture. This is very useful when:

* Debugging your evaluator against a baseline model.
* Fully train, validate and test your model after the search process is complete.

The usage is shown below:

.. code-block:: python

   # Class definition of single model, for example, ResNet.
   class SingleModel(nn.Module):
       def __init__():  # Can't have init parameters here.
           ...

   # Use a callable returning a model
   evaluator.evaluate(SingleModel)
   # Or initialize the model beforehand
   evaluator.evaluate(SingleModel())

The underlying implementation of :meth:`~nni.retiarii.Evaluator.evaluate` depends on concrete evaluator that you used.
For example, if :class:`~nni.retiarii.evaluator.FunctionalEvaluator` is used, it will run your customized fit function.
If lightning evaluators like :class:`nni.retiarii.evaluator.pytorch.Classification` are used, it will invoke the ``trainer.fit()`` of Lightning.

To evaluate an architecture that is exported from experiment (i.e., from :meth:`~nni.retiarii.experiment.pytorch.RetiariiExperiment.export_top_models`), use :func:`nni.retiarii.fixed_arch` to instantiate the exported model::

    with fixed_arch(exported_model):
        model = ModelSpace()
    # Then use evaluator.evaluate
    evaluator.evaluate(model)

.. tip:: There is a way to port the trained checkpoint of super-net produced by one-shot strategies, to the concrete chosen architecture, thanks to :func:`nni.retiarii.utils.original_state_dict_hooks`. This is helpful in implementing recent multi-stage NAS algorithms like `SPOS <https://arxiv.org/abs/1904.00420>`__.

.. _lightning-evaluator:

Evaluators with PyTorch-Lightning
---------------------------------

Use Built-in Evaluators
^^^^^^^^^^^^^^^^^^^^^^^

NNI provides some commonly used model evaluators for users' convenience. These evaluators are built upon the awesome library PyTorch-Lightning. Read the :doc:`reference </reference/nas/evaluator>` for their detailed usages.

* :class:`nni.retiarii.evaluator.pytorch.Classification`: for classification tasks.
* :class:`nni.retiarii.evaluator.pytorch.Regression`: for regression tasks.

We recommend to read the :doc:`serialization tutorial <serialization>` before using these evaluators. A few notes to summarize the tutorial:

1. :class:`nni.retiarii.evaluator.pytorch.DataLoader` should be used in place of ``torch.utils.data.DataLoader``.
2. The datasets used in data-loader should be decorated with :meth:`nni.trace` recursively.

For example,

.. code-block:: python

  import nni.retiarii.evaluator.pytorch.lightning as pl
  from torchvision import transforms

  transform = nni.trace(transforms.Compose, [nni.trace(transforms.ToTensor()), nni.trace(transforms.Normalize, (0.1307,), (0.3081,))])
  train_dataset = nni.trace(MNIST, root='data/mnist', train=True, download=True, transform=transform)
  test_dataset = nni.trace(MNIST, root='data/mnist', train=False, download=True, transform=transform)

  # pl.DataLoader and pl.Classification is already traced and supports serialization.
  evaluator = pl.Classification(train_dataloaders=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=10)

Customize Evaluator with PyTorch-Lightning
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Another approach is to write training code in PyTorch-Lightning style, that is, to write a LightningModule that defines all elements needed for training (e.g., loss function, optimizer) and to define a trainer that takes (optional) dataloaders to execute the training. Before that, please read the `document of PyTorch-lightning <https://pytorch-lightning.readthedocs.io/>`__ to learn the basic concepts and components provided by PyTorch-lightning.

In practice, writing a new training module in Retiarii should inherit :class:`nni.retiarii.evaluator.pytorch.LightningModule`, which has a ``set_model`` that will be called after ``__init__`` to save the candidate model (generated by strategy) as ``self.model``. The rest of the process (like ``training_step``) should be the same as writing any other lightning module. Evaluators should also communicate with strategies via two API calls (:meth:`nni.report_intermediate_result` for periodical metrics and :meth:`nni.report_final_result` for final metrics), added in ``on_validation_epoch_end`` and ``teardown`` respectively. 

An example is as follows:

.. code-block:: python

    from nni.retiarii.evaluator.pytorch.lightning import LightningModule  # please import this one

    @nni.trace
    class AutoEncoder(LightningModule):
        def __init__(self):
            super().__init__()
            self.decoder = nn.Sequential(
                nn.Linear(3, 64),
                nn.ReLU(),
                nn.Linear(64, 28*28)
            )

        def forward(self, x):
            embedding = self.model(x)  # let's search for encoder
            return embedding

        def training_step(self, batch, batch_idx):
            # training_step defined the train loop.
            # It is independent of forward
            x, y = batch
            x = x.view(x.size(0), -1)
            z = self.model(x)  # model is the one that is searched for
            x_hat = self.decoder(z)
            loss = F.mse_loss(x_hat, x)
            # Logging to TensorBoard by default
            self.log('train_loss', loss)
            return loss

        def validation_step(self, batch, batch_idx):
            x, y = batch
            x = x.view(x.size(0), -1)
            z = self.model(x)
            x_hat = self.decoder(z)
            loss = F.mse_loss(x_hat, x)
            self.log('val_loss', loss)

        def configure_optimizers(self):
            optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
            return optimizer

        def on_validation_epoch_end(self):
            nni.report_intermediate_result(self.trainer.callback_metrics['val_loss'].item())

        def teardown(self, stage):
            if stage == 'fit':
                nni.report_final_result(self.trainer.callback_metrics['val_loss'].item())

.. note::

   If you are trying to use your customized evaluator with one-shot strategy, bear in mind that your defined methods will be reassembled into another LightningModule, which might result in extra constraints when writing the LightningModule. For example, your validation step could appear else where (e.g., in ``training_step``). This prohibits you from returning arbitrary object in ``validation_step``.

Then, users need to wrap everything (including LightningModule, trainer and dataloaders) into a :class:`nni.retiarii.evaluator.pytorch.Lightning` object, and pass this object into a Retiarii experiment.

.. code-block:: python

    import nni.retiarii.evaluator.pytorch.lightning as pl
    from nni.retiarii.experiment.pytorch import RetiariiExperiment

    lightning = pl.Lightning(AutoEncoder(),
                             pl.Trainer(max_epochs=10),
                             train_dataloaders=pl.DataLoader(train_dataset, batch_size=100),
                             val_dataloaders=pl.DataLoader(test_dataset, batch_size=100))
    experiment = RetiariiExperiment(base_model, lightning, mutators, strategy)