hpo.po 5.88 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# SOME DESCRIPTIVE TITLE.
# Copyright (C) 2022, Microsoft
# This file is distributed under the same license as the NNI package.
# FIRST AUTHOR <EMAIL@ADDRESS>, 2022.
#
#, fuzzy
msgid ""
msgstr ""
"Project-Id-Version: NNI \n"
"Report-Msgid-Bugs-To: \n"
"POT-Creation-Date: 2022-04-20 05:50+0000\n"
"PO-Revision-Date: YEAR-MO-DA HO:MI+ZONE\n"
"Last-Translator: FULL NAME <EMAIL@ADDRESS>\n"
"Language-Team: LANGUAGE <LL@li.org>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: Babel 2.9.1\n"

#: ../../source/hpo/overview.rst:2
msgid "Hyperparameter Optimization Overview"
msgstr ""

#: ../../source/hpo/overview.rst:4
msgid ""
"Auto hyperparameter optimization (HPO), or auto tuning, is one of the key"
" features of NNI."
msgstr ""

#: ../../source/hpo/overview.rst:7
msgid "Introduction to HPO"
msgstr ""

#: ../../source/hpo/overview.rst:9
msgid ""
"In machine learning, a hyperparameter is a parameter whose value is used "
"to control learning process, and HPO is the problem of choosing a set of "
"optimal hyperparameters for a learning algorithm. (`From "
"<https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)>`__ "
"`Wikipedia "
"<https://en.wikipedia.org/wiki/Hyperparameter_optimization>`__)"
msgstr ""

#: ../../source/hpo/overview.rst:14
msgid "Following code snippet demonstrates a naive HPO process:"
msgstr ""

#: ../../source/hpo/overview.rst:34
msgid ""
"You may have noticed, the example will train 4×10×3=120 models in total. "
"Since it consumes so much computing resources, you may want to:"
msgstr ""

#: ../../source/hpo/overview.rst:37
msgid ""
":ref:`Find the best hyperparameter set with less iterations. <hpo-"
"overview-tuners>`"
msgstr ""

#: ../../source/hpo/overview.rst:38
msgid ":ref:`Train the models on distributed platforms. <hpo-overview-platforms>`"
msgstr ""

#: ../../source/hpo/overview.rst:39
msgid ""
":ref:`Have a portal to monitor and control the process. <hpo-overview-"
"portal>`"
msgstr ""

#: ../../source/hpo/overview.rst:41
msgid "NNI will do them for you."
msgstr ""

#: ../../source/hpo/overview.rst:44
msgid "Key Features of NNI HPO"
msgstr ""

#: ../../source/hpo/overview.rst:49
msgid "Tuning Algorithms"
msgstr ""

#: ../../source/hpo/overview.rst:51
msgid ""
"NNI provides *tuners* to speed up the process of finding best "
"hyperparameter set."
msgstr ""

#: ../../source/hpo/overview.rst:53
msgid ""
"A tuner, or a tuning algorithm, decides the order in which hyperparameter"
" sets are evaluated. Based on the results of historical hyperparameter "
"sets, an efficient tuner can predict where the best hyperparameters "
"locates around, and finds them in much fewer attempts."
msgstr ""

#: ../../source/hpo/overview.rst:57
msgid ""
"The naive example above evaluates all possible hyperparameter sets in "
"constant order, ignoring the historical results. This is the brute-force "
"tuning algorithm called *grid search*."
msgstr ""

#: ../../source/hpo/overview.rst:60
msgid ""
"NNI has out-of-the-box support for a variety of popular tuners. It "
"includes naive algorithms like random search and grid search, Bayesian-"
"based algorithms like TPE and SMAC, RL based algorithms like PPO, and "
"much more."
msgstr ""

#: ../../source/hpo/overview.rst:64
msgid "Main article: :doc:`tuners`"
msgstr ""

#: ../../source/hpo/overview.rst:69
msgid "Training Platforms"
msgstr ""

#: ../../source/hpo/overview.rst:71
msgid ""
"If you are not interested in distributed platforms, you can simply run "
"NNI HPO with current computer, just like any ordinary Python library."
msgstr ""

#: ../../source/hpo/overview.rst:74
msgid ""
"And when you want to leverage more computing resources, NNI provides "
"built-in integration for training platforms from simple on-premise "
"servers to scalable commercial clouds."
msgstr ""

#: ../../source/hpo/overview.rst:77
msgid ""
"With NNI you can write one piece of model code, and concurrently evaluate"
" hyperparameter sets on local machine, SSH servers, Kubernetes-based "
"clusters, AzureML service, and much more."
msgstr ""

#: ../../source/hpo/overview.rst:80
msgid "Main article: :doc:`/experiment/training_service/overview`"
msgstr ""

#: ../../source/hpo/overview.rst:85
msgid "Web Portal"
msgstr ""

#: ../../source/hpo/overview.rst:87
msgid ""
"NNI provides a web portal to monitor training progress, to visualize "
"hyperparameter performance, to manually customize hyperparameters, and to"
" manage multiple HPO experiments."
msgstr ""

#: ../../source/hpo/overview.rst:90
msgid "Main article: :doc:`/experiment/web_portal/web_portal`"
msgstr ""

#: ../../source/hpo/overview.rst:96
msgid "Tutorials"
msgstr ""

#: ../../source/hpo/overview.rst:98
msgid ""
"To start using NNI HPO, choose the quickstart tutorial of your favorite "
"framework:"
msgstr ""

#: ../../source/hpo/overview.rst:100
msgid ":doc:`PyTorch tutorial </tutorials/hpo_quickstart_pytorch/main>`"
msgstr ""

#: ../../source/hpo/overview.rst:101
msgid ":doc:`TensorFlow tutorial </tutorials/hpo_quickstart_tensorflow/main>`"
msgstr ""

#: ../../source/hpo/overview.rst:104
msgid "Extra Features"
msgstr ""

#: ../../source/hpo/overview.rst:106
msgid ""
"After you are familiar with basic usage, you can explore more HPO "
"features:"
msgstr ""

#: ../../source/hpo/overview.rst:108
msgid ""
":doc:`Use command line tool to create and manage experiments (nnictl) "
"</reference/nnictl>`"
msgstr ""

#: ../../source/hpo/overview.rst:110
msgid ":doc:`nnictl example </tutorials/hpo_nnictl/nnictl>`"
msgstr ""

#: ../../source/hpo/overview.rst:112
msgid ":doc:`Early stop non-optimal models (assessor) <assessors>`"
msgstr ""

#: ../../source/hpo/overview.rst:113
msgid ":doc:`TensorBoard integration </experiment/web_portal/tensorboard>`"
msgstr ""

#: ../../source/hpo/overview.rst:114
msgid ":doc:`Implement your own algorithm <custom_algorithm>`"
msgstr ""

#: ../../source/hpo/overview.rst:115
msgid ":doc:`Benchmark tuners <hpo_benchmark>`"
msgstr ""