"vscode:/vscode.git/clone" did not exist on "64abf1b19d8687601bd3be343066f9bb76223704"
index.rst 8.01 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
NNI Documentation
=================

.. toctree::
   :maxdepth: 2
   :caption: Get Started
   :hidden:

   installation
   quickstart

.. toctree::
   :maxdepth: 2
   :caption: User Guide
   :hidden:

   hpo/toctree
   nas/toctree
   Model Compression <compression/toctree>
   feature_engineering/toctree
   experiment/toctree

.. toctree::
   :maxdepth: 2
   :caption: References
   :hidden:

   Python API <reference/python_api>
   reference/experiment_config
   reference/nnictl

.. toctree::
   :maxdepth: 2
   :caption: Misc
   :hidden:

   examples
   sharings/community_sharings
   notes/research_publications
   notes/build_from_source
   notes/contributing
   release

**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**:

* :doc:`Hyperparameter Optimization </hpo/overview>`
* :doc:`Neural Architecture Search </nas/overview>`
* :doc:`Model Compression </compression/overview>`
* :doc:`Feature Engineering </feature_engineering/overview>`

Get Started
-----------

To install the current release:

.. code-block:: bash

   $ pip install nni

See the :doc:`installation guide </installation>` if you need additional help on installation.

Try your first NNI experiment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code-block:: shell

   $ nnictl hello

.. note:: You need to have `PyTorch <https://pytorch.org/>`_ (as well as `torchvision <https://pytorch.org/vision/stable/index.html>`_) installed to run this experiment.

To start your journey now, please follow the :doc:`absolute quickstart of NNI <quickstart>`!

Why choose NNI?
---------------

NNI makes AutoML techniques plug-and-play
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. raw:: html

   <div class="codesnippet-card-container">

.. codesnippetcard::
   :icon: ../img/thumbnails/hpo-small.svg
   :title: Hyperparameter Tuning
   :link: tutorials/hpo_quickstart_pytorch/main

   .. code-block::

      params = nni.get_next_parameter()

      class Net(nn.Module):
          ...

      model = Net()
      optimizer = optim.SGD(model.parameters(),
                            params['lr'],
                            params['momentum'])

      for epoch in range(10):
          train(...)

      accuracy = test(model)
      nni.report_final_result(accuracy)

.. codesnippetcard::
   :icon: ../img/thumbnails/pruning-small.svg
   :title: Model Pruning
   :link: tutorials/pruning_quick_start_mnist

   .. code-block::

      # define a config_list
      config = [{
          'sparsity': 0.8,
          'op_types': ['Conv2d']
      }]

      # generate masks for simulated pruning
      wrapped_model, masks = \
          L1NormPruner(model, config). \
          compress()

      # apply the masks for real speedup
      ModelSpeedup(unwrapped_model, input, masks). \
          speedup_model()

.. codesnippetcard::
   :icon: ../img/thumbnails/quantization-small.svg
   :title: Quantization
   :link: tutorials/quantization_quick_start_mnist

   .. code-block::

      # define a config_list
      config = [{
          'quant_types': ['input', 'weight'],
          'quant_bits': {'input': 8, 'weight': 8},
          'op_types': ['Conv2d']
      }]

      # in case quantizer needs a extra training
      quantizer = QAT_Quantizer(model, config)
      quantizer.compress()
      # Training...

      # export calibration config and
      # generate TensorRT engine for real speedup
      calibration_config = quantizer.export_model(
          model_path, calibration_path)
      engine = ModelSpeedupTensorRT(
          model, input_shape, config=calib_config)
      engine.compress()

.. codesnippetcard::
   :icon: ../img/thumbnails/multi-trial-nas-small.svg
   :title: Neural Architecture Search
   :link: tutorials/hello_nas

   .. code-block:: python

      # define model space
      class Model(nn.Module):
          self.conv2 = nn.LayerChoice([
              nn.Conv2d(32, 64, 3, 1),
              DepthwiseSeparableConv(32, 64)
          ])
      model_space = Model()
      # search strategy + evaluator
      strategy = RegularizedEvolution()
      evaluator = FunctionalEvaluator(
          train_eval_fn)

      # run experiment
      RetiariiExperiment(model_space,
          evaluator, strategy).run()

.. codesnippetcard::
   :icon: ../img/thumbnails/one-shot-nas-small.svg
   :title: One-shot NAS
   :link: nas/exploration_strategy

   .. code-block::

      # define model space
      space = AnySearchSpace()

      # get a darts trainer
      trainer = DartsTrainer(space, loss, metrics)
      trainer.fit()

      # get final searched architecture
      arch = trainer.export()

.. codesnippetcard::
   :icon: ../img/thumbnails/feature-engineering-small.svg
   :title: Feature Engineering
   :link: feature_engineering/overview

   .. code-block::

      selector = GBDTSelector()
      selector.fit(
          X_train, y_train,
          lgb_params=lgb_params,
          eval_ratio=eval_ratio,
          early_stopping_rounds=10,
          importance_type='gain',
          num_boost_round=1000)

      # get selected features
      features = selector.get_selected_features()

.. End of code snippet card

.. raw:: html

   </div>

NNI eases the effort to scale and manage AutoML experiments
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. codesnippetcard::
   :icon: ../img/thumbnails/training-service-small.svg
   :title: Training Service
   :link: experiment/training_service/overview
   :seemore: See more here.

   An AutoML experiment requires many trials to explore feasible and potentially good-performing models.
   **Training service** aims to make the tuning process easily scalable in a distributed platforms.
   It provides a unified user experience for diverse computation resources (e.g., local machine, remote servers, AKS).
   Currently, NNI supports **more than 9** kinds of training services.

.. codesnippetcard::
   :icon: ../img/thumbnails/web-portal-small.svg
   :title: Web Portal
   :link: experiment/web_portal/web_portal
   :seemore: See more here.

   Web portal visualizes the tuning process, exposing the ability to inspect, monitor and control the experiment.

   .. image:: ../static/img/webui.gif
      :width: 100%

.. codesnippetcard::
   :icon: ../img/thumbnails/experiment-management-small.svg
   :title: Experiment Management
   :link: experiment/experiment_management
   :seemore: See more here.

   The DNN model tuning often requires more than one experiment.
   Users might try different tuning algorithms, fine-tune their search space, or switch to another training service.
   **Experiment management** provides the power to aggregate and compare tuning results from multiple experiments,
   so that the tuning workflow becomes clean and organized.

Get Support and Contribute Back
-------------------------------

NNI is maintained on the `NNI GitHub repository <https://github.com/microsoft/nni>`_. We collect feedbacks and new proposals/ideas on GitHub. You can:

* Open a `GitHub issue <https://github.com/microsoft/nni/issues>`_ for bugs and feature requests.
* Open a `pull request <https://github.com/microsoft/nni/pulls>`_ to contribute code (make sure to read the :doc:`contribution guide <notes/contributing>` before doing this).
* Participate in `NNI Discussion <https://github.com/microsoft/nni/discussions>`_ for general questions and new ideas.
* Join the following IM groups.

.. list-table::
   :header-rows: 1
   :widths: auto

   * - Gitter
     - WeChat
   * -
       .. image:: https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png
     -
       .. image:: https://github.com/scarlett2018/nniutil/raw/master/wechat.png

Citing NNI
----------

If you use NNI in a scientific publication, please consider citing NNI in your references.

   Microsoft. Neural Network Intelligence (version |release|). https://github.com/microsoft/nni

Bibtex entry (please replace the version with the particular version you are using): ::

   @software{nni2021,
      author = {{Microsoft}},
      month = {1},
      title = {{Neural Network Intelligence}},
      url = {https://github.com/microsoft/nni},
      version = {2.0},
      year = {2021}
   }