"vscode:/vscode.git/clone" did not exist on "e1d4ab12aa5a461eb496a7f9f8b16b7fd9f4c1c1"
overview_zh.rst 5.98 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
.. 1bfa9317e112e9ffc5c7c6a2625188ab

神经架构搜索
===========================

.. toctree::
   :hidden:

   快速入门 </tutorials/hello_nas>
   构建搜索空间 <construct_space>
   探索策略 <exploration_strategy>
   评估器 <evaluator>
   高级用法 <advanced_usage>

.. attention:: NNI 最新的架构搜索支持都是基于 Retiarii 框架,还在使用 `NNI 架构搜索的早期版本 <https://nni.readthedocs.io/en/v2.2/nas.html>`__ 的用户应尽快将您的工作迁移到 Retiarii。我们计划在接下来的几个版本中删除旧的架构搜索框架。

.. attention:: PyTorch 是 **Retiarii 唯一支持的框架**。有关 Tensorflow 上架构搜索支持的需求在 `此讨论 <https://github.com/microsoft/nni/discussions/4605>`__ 中。另外,如果您打算使用 PyTorch 和 Tensorflow 以外的 DL 框架运行 NAS,请 `创建新 issue <https://github.com/microsoft/nni/issues>`__ 让我们知道。

概述
------

自动神经架构搜索 (Neural Architecture Search, NAS)在寻找更好的模型方面发挥着越来越重要的作用。最近的研究证明了自动架构搜索的可行性,并导致模型击败了许多手动设计和调整的模型。其中具有代表性的有 `NASNet <https://arxiv.org/abs/1707.07012>`__、 `ENAS <https://arxiv.org/abs/1802.03268>`__、 `DARTS <https://arxiv.org/ abs/1806.09055>`__、 `Network Morphism <https://arxiv.org/abs/1806.10282>`__ 和 `进化算法 <https://arxiv.org/abs/1703.01041>`__。此外,新的创新正不断涌现。

总的来说,使用神经架构搜索解决任何特定任务通常需要:搜索空间设计、搜索策略选择和性能评估。这三个组件形成如下的循环(图来自于 `架构搜索综述 <https://arxiv.org/abs/1808.05377>`__):

.. image:: ../../img/nas_abstract_illustration.png
   :align: center
   :width: 700

在这个图中:

* *模型搜索空间* 是指一组模型,从中探索/搜索最佳模型,简称为 *搜索空间* 或 *模型空间*。
* *探索策略* 是用于探索模型搜索空间的算法。有时我们也称它为 *搜索策略*。
* *模型评估者* 负责训练模型并评估其性能。

该过程类似于 :doc:`超参数优化 </hpo/index>`,只不过目标是最佳网络结构而不是最优超参数。具体来说,探索策略从预定义的搜索空间中选择架构。该架构被传递给性能评估以获得评分,该评分表示这个网络结构在特定任务上的表现。重复此过程,直到搜索过程能够找到最优的网络结构。

主要特点
------------

NNI 中当前的架构搜索框架由 `Retiarii: A Deep Learning Exploratory-Training Framework <https://www.usenix.org/system/files/osdi20-zhang_quanlu.pdf>`__ 的研究支撑,具有以下特点:

* :doc:`简单的 API,让您轻松构建搜索空间 <construct_space>`
* :doc:`SOTA 架构搜索算法,以高效探索搜索空间 <exploration_strategy>`
* :doc:`后端支持,在大规模 AI 平台上运行实验 </experiment/overview>`

为什么使用 NNI 的架构搜索
-------------------------------

若没有 NNI,实现架构搜索将极具挑战性,主要包含以下三个方面。当用户想在自己的场景中尝试架构搜索技术时,NNI 提供的解决方案可以极大程度上减轻用户的工作量。

搜索空间设计
^^^^^^^^^^^^^^^^^^^

搜索空间定义了架构的可行域集合。为了简化搜索,我们通常需要结合任务相关的先验知识,减小搜索空间的规模。然而,这也引入了人类的偏见,在某种程度上可能会丧失突破人类认知的可能性。无论如何,对于初学者来说,搜索空间设计是一个极具挑战性的任务,因为他们可能无法在简单的空间和丰富的想象力之间取得平衡。

在 NNI 中,我们提供了不同层级的 API 来构建搜索空间。有 :doc:`高层 API <construct_space>`,引入大量先验,帮助用户迅速了解什么是好的架构或搜索空间;也有 :doc:`底层 API <mutator>`,提供了最底层的算子和图变换原语。

探索策略
^^^^^^^^^^^^^^^^^^^^

探索策略定义了如何探索搜索空间(通常是指数级规模的)。它包含经典的探索-利用权衡。一方面,我们希望快速找到性能良好的架构;而另一方面,我们也应避免过早收敛到次优架构的区域。我们往往需要通常通过反复试验找到特定场景的“最佳”探索策略。由于许多近期发表的探索策略都是使用自己的代码库实现的,因此从一个切换到另一个变得非常麻烦。

在 NNI 中,我们还提供了 :doc:`一系列的探索策略 <exploration_strategy>`。其中一些功能强大但耗时,而另一些可能不能找到最优架构但非常高效。鉴于所有策略都使用统一的用户接口实现,用户可以轻松找到符合他们需求的策略。

性能评估
^^^^^^^^^^^^^^^^^^^^^^

架构搜索的目标通常是找到能够在测试数据集表现理想的网络结构。性能评估的作用便是量化每个网络的好坏。其主要难点在于可扩展性,即如何在大规模训练平台上同时运行和管理多个试验。

在 NNI 中,我们使用 :doc:`evaluator <evaluator>` 来标准化性能评估流程。它负责估计模型的性能。NNI 内建了不少性能评估器,从最简单的交叉验证,到复杂的自定义配置。评估器在 *试验 (trials)* 中运行,可以通过我们强大的 :doc:`训练平台 </experiment/training_service/overview>` 将试验分发到大规模训练平台上。

教程
---------

要开始使用 NNI 架构搜索框架,我们建议至少阅读以下教程:

* :doc:`快速入门 </tutorials/hello_nas>`
* :doc:`构建搜索空间 <construct_space>`
* :doc:`探索策略 <exploration_strategy>`
* :doc:`评估器 <evaluator>`

资源
---------

以下文章将有助于更好地了解 NAS 的最新发展:

* `神经架构搜索:综述 <https://arxiv.org/abs/1808.05377>`__
* `神经架构搜索的综述:挑战和解决方案 <https://arxiv.org/abs/2006.02903>`__