slim_pruner_torch_vgg19.py 6.44 KB
Newer Older
Tang Lang's avatar
Tang Lang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import SlimPruner


class vgg(nn.Module):
    def __init__(self, init_weights=True):
        super(vgg, self).__init__()
        cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512]
        self.feature = self.make_layers(cfg, True)
        num_classes = 10
        self.classifier = nn.Linear(cfg[-1], num_classes)
        if init_weights:
            self._initialize_weights()

    def make_layers(self, cfg, batch_norm=False):
        layers = []
        in_channels = 3
        for v in cfg:
            if v == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False)
                if batch_norm:
                    layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
                else:
                    layers += [conv2d, nn.ReLU(inplace=True)]
                in_channels = v
        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.feature(x)
        x = nn.AvgPool2d(2)(x)
        x = x.view(x.size(0), -1)
        y = self.classifier(x)
        return y

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(0.5)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()


def updateBN(model):
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            m.weight.grad.data.add_(0.0001 * torch.sign(m.weight.data))  # L1


def train(model, device, train_loader, optimizer, sparse_bn=False):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        # L1 regularization on BN layer
        if sparse_bn:
            updateBN(model)
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc


def main():
    torch.manual_seed(0)
    device = torch.device('cuda')
    train_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.Pad(4),
                             transforms.RandomCrop(32),
                             transforms.RandomHorizontalFlip(),
                             transforms.ToTensor(),
                             transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                         ])),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])),
        batch_size=200, shuffle=False)

    model = vgg()
    model.to(device)

    # Train the base VGG-19 model
    print('=' * 10 + 'Train the unpruned base model' + '=' * 10)
    epochs = 160
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
    for epoch in range(epochs):
        if epoch in [epochs * 0.5, epochs * 0.75]:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.1
        train(model, device, train_loader, optimizer, True)
        test(model, device, test_loader)
    torch.save(model.state_dict(), 'vgg19_cifar10.pth')

    # Test base model accuracy
    print('=' * 10 + 'Test the original model' + '=' * 10)
    model.load_state_dict(torch.load('vgg19_cifar10.pth'))
    test(model, device, test_loader)
    # top1 = 93.60%

    # Pruning Configuration, in paper 'Learning efficient convolutional networks through network slimming',
    configure_list = [{
        'sparsity': 0.7,
        'op_types': ['BatchNorm2d'],
    }]

    # Prune model and test accuracy without fine tuning.
    print('=' * 10 + 'Test the pruned model before fine tune' + '=' * 10)
    pruner = SlimPruner(model, configure_list)
    model = pruner.compress()
    test(model, device, test_loader)
    # top1 = 93.55%

    # Fine tune the pruned model for 40 epochs and test accuracy
    print('=' * 10 + 'Fine tuning' + '=' * 10)
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0
    for epoch in range(40):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruned_vgg19_cifar10.pth', mask_path='mask_vgg19_cifar10.pth')

    # Test the exported model
    print('=' * 10 + 'Test the export pruned model after fine tune' + '=' * 10)
    new_model = vgg()
    new_model.to(device)
    new_model.load_state_dict(torch.load('pruned_vgg19_cifar10.pth'))
    test(new_model, device, test_loader)
    # top1 = 93.61%


if __name__ == '__main__':
    main()