quantization_quick_start_mnist.rst 4.98 KB
Newer Older
J-shang's avatar
J-shang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/quantization_quick_start_mnist.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_quantization_quick_start_mnist.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_quantization_quick_start_mnist.py:


Quantization Quickstart
=======================

Quantization reduces model size and speeds up inference time by reducing the number of bits required to represent weights or activations.

In NNI, both post-training quantization algorithms and quantization-aware training algorithms are supported.
Here we use `QAT_Quantizer` as an example to show the usage of quantization in NNI.

.. GENERATED FROM PYTHON SOURCE LINES 12-17

Preparation
-----------

In this tutorial, we use a simple model and pre-train on MNIST dataset.
If you are familiar with defining a model and training in pytorch, you can skip directly to `Quantizing Model`_.

.. GENERATED FROM PYTHON SOURCE LINES 17-37

.. code-block:: default


    import torch
    import torch.nn.functional as F
    from torch.optim import SGD

    from scripts.compression_mnist_model import TorchModel, trainer, evaluator, device

    # define the model
    model = TorchModel().to(device)

    # define the optimizer and criterion for pre-training

    optimizer = SGD(model.parameters(), 1e-2)
    criterion = F.nll_loss

    # pre-train and evaluate the model on MNIST dataset
    for epoch in range(3):
        trainer(model, optimizer, criterion)
        evaluator(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Average test loss: 0.4891, Accuracy: 8504/10000 (85%)
    Average test loss: 0.2644, Accuracy: 9179/10000 (92%)
    Average test loss: 0.1953, Accuracy: 9414/10000 (94%)




.. GENERATED FROM PYTHON SOURCE LINES 38-42

Quantizing Model
----------------

Initialize a `config_list`.

.. GENERATED FROM PYTHON SOURCE LINES 42-61

.. code-block:: default


    config_list = [{
        'quant_types': ['input', 'weight'],
        'quant_bits': {'input': 8, 'weight': 8},
        'op_names': ['conv1']
    }, {
        'quant_types': ['output'],
        'quant_bits': {'output': 8},
        'op_names': ['relu1']
    }, {
        'quant_types': ['input', 'weight'],
        'quant_bits': {'input': 8, 'weight': 8},
        'op_names': ['conv2']
    }, {
        'quant_types': ['output'],
        'quant_bits': {'output': 8},
        'op_names': ['relu2']
    }]








.. GENERATED FROM PYTHON SOURCE LINES 62-63

finetuning the model by using QAT

.. GENERATED FROM PYTHON SOURCE LINES 63-71

.. code-block:: default

    from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer
    dummy_input = torch.rand(32, 1, 28, 28).to(device)
    quantizer = QAT_Quantizer(model, config_list, optimizer, dummy_input)
    quantizer.compress()
    for epoch in range(3):
        trainer(model, optimizer, criterion)
        evaluator(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    Average test loss: 0.1421, Accuracy: 9567/10000 (96%)
    Average test loss: 0.1180, Accuracy: 9621/10000 (96%)
    Average test loss: 0.1119, Accuracy: 9649/10000 (96%)




.. GENERATED FROM PYTHON SOURCE LINES 72-73

export model and get calibration_config

.. GENERATED FROM PYTHON SOURCE LINES 73-78

.. code-block:: default

    model_path = "./log/mnist_model.pth"
    calibration_path = "./log/mnist_calibration.pth"
    calibration_config = quantizer.export_model(model_path, calibration_path)

    print("calibration_config: ", calibration_config)




.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    calibration_config:  {'conv1': {'weight_bits': 8, 'weight_scale': tensor([0.0034], device='cuda:0'), 'weight_zero_point': tensor([71.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': -0.4242129623889923, 'tracked_max_input': 2.821486711502075}, 'conv2': {'weight_bits': 8, 'weight_scale': tensor([0.0020], device='cuda:0'), 'weight_zero_point': tensor([112.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 13.904684066772461}}





.. rst-class:: sphx-glr-timing

   **Total running time of the script:** ( 1 minutes  25.558 seconds)


.. _sphx_glr_download_tutorials_quantization_quick_start_mnist.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: quantization_quick_start_mnist.py <quantization_quick_start_mnist.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: quantization_quick_start_mnist.ipynb <quantization_quick_start_mnist.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_