test_tuner.py 4.97 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) Microsoft Corporation. All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
# associated documentation files (the "Software"), to deal in the Software without restriction,
# including without limitation the rights to use, copy, modify, merge, publish, distribute,
# sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all copies or
# substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
# OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# ==================================================================================================


import nni.protocol
from nni.protocol import CommandType, send, receive
from nni.tuner import Tuner
25
from nni.msg_dispatcher import MsgDispatcher
26
from nni.utils import extract_scalar_reward
Deshui Yu's avatar
Deshui Yu committed
27
28
29
30
31
32
33
34
35
36
37
from io import BytesIO
import json
from unittest import TestCase, main


class NaiveTuner(Tuner):
    def __init__(self):
        self.param = 0
        self.trial_results = [ ]
        self.search_space = None

38
    def generate_parameters(self, parameter_id, **kwargs):
Deshui Yu's avatar
Deshui Yu committed
39
40
41
42
43
44
45
46
47
        # report Tuner's internal states to generated parameters,
        # so we don't need to pause the main loop
        self.param += 2
        return {
            'param': self.param,
            'trial_results': self.trial_results,
            'search_space': self.search_space
        }

48
    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
49
        reward = extract_scalar_reward(value)
Deshui Yu's avatar
Deshui Yu committed
50
51
        self.trial_results.append((parameter_id, parameters['param'], reward, False))

52
    def receive_customized_trial_result(self, parameter_id, parameters, value):
53
        reward = extract_scalar_reward(value)
Deshui Yu's avatar
Deshui Yu committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        self.trial_results.append((parameter_id, parameters['param'], reward, True))

    def update_search_space(self, search_space):
        self.search_space = search_space


_in_buf = BytesIO()
_out_buf = BytesIO()

def _reverse_io():
    _in_buf.seek(0)
    _out_buf.seek(0)
    nni.protocol._out_file = _in_buf
    nni.protocol._in_file = _out_buf

def _restore_io():
    _in_buf.seek(0)
    _out_buf.seek(0)
    nni.protocol._in_file = _in_buf
    nni.protocol._out_file = _out_buf



class TunerTestCase(TestCase):
    def test_tuner(self):
        _reverse_io()  # now we are sending to Tuner's incoming stream
        send(CommandType.RequestTrialJobs, '2')
        send(CommandType.ReportMetricData, '{"parameter_id":0,"type":"PERIODICAL","value":10}')
        send(CommandType.ReportMetricData, '{"parameter_id":1,"type":"FINAL","value":11}')
        send(CommandType.UpdateSearchSpace, '{"name":"SS0"}')
        send(CommandType.AddCustomizedTrialJob, '{"param":-1}')
        send(CommandType.ReportMetricData, '{"parameter_id":2,"type":"FINAL","value":22}')
        send(CommandType.RequestTrialJobs, '1')
        send(CommandType.KillTrialJob, 'null')
        _restore_io()

        tuner = NaiveTuner()
91
        dispatcher = MsgDispatcher(tuner)
92
93
94
95
96
97
        nni.msg_dispatcher_base._worker_fast_exit_on_terminate = False

        dispatcher.run()
        e = dispatcher.worker_exceptions[0]
        self.assertIs(type(e), AssertionError)
        self.assertEqual(e.args[0], 'Unsupported command: CommandType.KillTrialJob')
Deshui Yu's avatar
Deshui Yu committed
98
99
100
101
102
103
104
105

        _reverse_io()  # now we are receiving from Tuner's outgoing stream
        self._assert_params(0, 2, [ ], None)
        self._assert_params(1, 4, [ ], None)

        command, data = receive()  # this one is customized
        data = json.loads(data)
        self.assertIs(command, CommandType.NewTrialJob)
106
107
108
        self.assertEqual(data['parameter_id'], 2)
        self.assertEqual(data['parameter_source'], 'customized')
        self.assertEqual(data['parameters'], { 'param': -1 })
Deshui Yu's avatar
Deshui Yu committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

        self._assert_params(3, 6, [[1,4,11,False], [2,-1,22,True]], {'name':'SS0'})

        self.assertEqual(len(_out_buf.read()), 0)  # no more commands


    def _assert_params(self, parameter_id, param, trial_results, search_space):
        command, data = receive()
        self.assertIs(command, CommandType.NewTrialJob)
        data = json.loads(data)
        self.assertEqual(data['parameter_id'], parameter_id)
        self.assertEqual(data['parameter_source'], 'algorithm')
        self.assertEqual(data['parameters']['param'], param)
        self.assertEqual(data['parameters']['trial_results'], trial_results)
        self.assertEqual(data['parameters']['search_space'], search_space)


if __name__ == '__main__':
    main()