customer_tuner.py 5.11 KB
Newer Older
Deshui Yu's avatar
Deshui Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from graph import *

import copy
import json
import logging
import random
import numpy as np

from nni.tuner import Tuner
27
from nni.utils import extract_scalar_reward
Deshui Yu's avatar
Deshui Yu committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

logger = logging.getLogger('ga_customer_tuner')


@unique
class OptimizeMode(Enum):
    Minimize = 'minimize'
    Maximize = 'maximize'


def init_population(population_size=32):
    population = []
    graph = Graph(4,
                  input=[Layer(LayerType.input.value, output=[4, 5], size='x'), Layer(LayerType.input.value, output=[4, 5], size='y')],
                  output=[Layer(LayerType.output.value, input=[4], size='x'), Layer(LayerType.output.value, input=[5], size='y')],
                  hide=[Layer(LayerType.attention.value, input=[0, 1], output=[2]), Layer(LayerType.attention.value, input=[1, 0], output=[3])])
    for _ in range(population_size):
        g = copy.deepcopy(graph)
        for _ in range(1):
            g.mutation()
        population.append(Individual(g, result=None))
    return population


class Individual(object):
    def __init__(self, config=None, info=None, result=None, save_dir=None):
        self.config = config
        self.result = result
        self.info = info
        self.restore_dir = None
        self.save_dir = save_dir

    def __str__(self):
        return "info: " + str(self.info) + ", config :" + str(self.config) + ", result: " + str(self.result)

    def mutation(self, config=None, info=None, save_dir=None):
        self.result = None
65
66
        if config is not None:
            self.config = config
Deshui Yu's avatar
Deshui Yu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        self.config.mutation()
        self.restore_dir = self.save_dir
        self.save_dir = save_dir
        self.info = info


class CustomerTuner(Tuner):
    def __init__(self, optimize_mode, population_size = 32):
        self.optimize_mode = OptimizeMode(optimize_mode)
        self.population = init_population(population_size)

        assert len(self.population) == population_size
        logger.debug('init population done.')
        return

82
    def generate_parameters(self, parameter_id, **kwargs):
Deshui Yu's avatar
Deshui Yu committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        """Returns a set of trial graph config, as a serializable object.
        parameter_id : int
        """
        if len(self.population) <= 0:
            logger.debug("the len of poplution lower than zero.")
            raise Exception('The population is empty')
        pos = -1
        for i in range(len(self.population)):
            if self.population[i].result == None:
                pos = i
                break
        if pos != -1:
            indiv = copy.deepcopy(self.population[pos])
            self.population.pop(pos)
            temp = json.loads(graph_dumps(indiv.config))
        else:
            random.shuffle(self.population)
Yan Ni's avatar
Yan Ni committed
100
            if self.population[0].result < self.population[1].result:
Deshui Yu's avatar
Deshui Yu committed
101
102
103
104
105
106
107
108
109
110
111
                self.population[0] = self.population[1]
            indiv = copy.deepcopy(self.population[0])
            self.population.pop(1)
            indiv.mutation()
            graph = indiv.config
            temp =  json.loads(graph_dumps(graph))
        logger.debug('generate_parameter return value is:')
        logger.debug(temp)
        return temp


112
    def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
Deshui Yu's avatar
Deshui Yu committed
113
114
115
116
        '''
        Record an observation of the objective function
        parameter_id : int
        parameters : dict of parameters
117
        value: final metrics of the trial, including reward
Deshui Yu's avatar
Deshui Yu committed
118
        '''
119
        reward = extract_scalar_reward(value)
Deshui Yu's avatar
Deshui Yu committed
120
121
122
123
124
125
126
        if self.optimize_mode is OptimizeMode.Minimize:
            reward = -reward

        logger.debug('receive trial result is:\n')
        logger.debug(str(parameters))
        logger.debug(str(reward))

127
        indiv = Individual(graph_loads(parameters), result=reward)
Deshui Yu's avatar
Deshui Yu committed
128
129
130
131
132
133
134
135
        self.population.append(indiv)
        return

    def update_search_space(self, data):
        pass

if __name__ =='__main__':
    tuner = CustomerTuner(OptimizeMode.Maximize)
136
    config = tuner.generate_parameters(0)
Deshui Yu's avatar
Deshui Yu committed
137
138
139
    with open('./data.json', 'w') as outfile:
        json.dump(config, outfile)
    tuner.receive_trial_result(0, config, 0.99)