main_tf_pruner.py 4.95 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
from nni.compression.tensorflow import AGP_Pruner
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data


def weight_variable(shape):
    return tf.Variable(tf.truncated_normal(shape, stddev = 0.1))

def bias_variable(shape):
    return tf.Variable(tf.constant(0.1, shape = shape))

def conv2d(x_input, w_matrix):
    return tf.nn.conv2d(x_input, w_matrix, strides = [ 1, 1, 1, 1 ], padding = 'SAME')

def max_pool(x_input, pool_size):
    size = [ 1, pool_size, pool_size, 1 ]
    return tf.nn.max_pool(x_input, ksize = size, strides = size, padding = 'SAME')


class Mnist:
    def __init__(self):
        images = tf.placeholder(tf.float32, [ None, 784 ], name = 'input_x')
        labels = tf.placeholder(tf.float32, [ None, 10 ], name = 'input_y')
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')

        self.images = images
        self.labels = labels
        self.keep_prob = keep_prob

        self.train_step = None
        self.accuracy = None

        self.w1 = None
        self.b1 = None
        self.fcw1 = None
        self.cross = None
        with tf.name_scope('reshape'):
            x_image = tf.reshape(images, [ -1, 28, 28, 1 ])
        with tf.name_scope('conv1'):
            w_conv1 = weight_variable([ 5, 5, 1, 32 ])
            self.w1 = w_conv1
            b_conv1 = bias_variable([ 32 ])
            self.b1 = b_conv1
            h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
        with tf.name_scope('pool1'):
            h_pool1 = max_pool(h_conv1, 2)
        with tf.name_scope('conv2'):
            w_conv2 = weight_variable([ 5, 5, 32, 64 ])
            b_conv2 = bias_variable([ 64 ])
            h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
        with tf.name_scope('pool2'):
            h_pool2 = max_pool(h_conv2, 2)
        with tf.name_scope('fc1'):
            w_fc1 = weight_variable([ 7 * 7 * 64, 1024 ])
            self.fcw1 = w_fc1
            b_fc1 = bias_variable([ 1024 ])
        h_pool2_flat = tf.reshape(h_pool2, [ -1, 7 * 7 * 64 ])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
        with tf.name_scope('dropout'):
            h_fc1_drop = tf.nn.dropout(h_fc1, 0.5)
        with tf.name_scope('fc2'):
            w_fc2 = weight_variable([ 1024, 10 ])
            b_fc2 = bias_variable([ 10 ])
            y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
        with tf.name_scope('loss'):
            cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = labels, logits = y_conv))
            self.cross = cross_entropy
        with tf.name_scope('adam_optimizer'):
            self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
        with tf.name_scope('accuracy'):
            correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))


def main():
    tf.set_random_seed(0)

    data = input_data.read_data_sets('data', one_hot = True)

    model = Mnist()

    '''you can change this to SensitivityPruner to implement it
    pruner = SensitivityPruner(configure_list)
    '''
    configure_list = [{
                        'initial_sparsity': 0,
                        'final_sparsity': 0.8,
                        'start_epoch': 1,
                        'end_epoch': 10,
                        'frequency': 1,
                        'op_type': 'default'
                    }]
    pruner = AGP_Pruner(configure_list)
    # if you want to load from yaml file
    # configure_file = nni.compressors.tf_compressor._nnimc_tf._tf_default_load_configure_file('configure_example.yaml','AGPruner')
    # configure_list = configure_file.get('config',[])
    # pruner.load_configure(configure_list)
    # you can also handle it yourself and input an configure list in json
    pruner(tf.get_default_graph())
    # you can also use compress(model) or compress_default_graph() for tensorflow compressor
    # pruner.compress(tf.get_default_graph())
    
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for batch_idx in range(2000):
            batch = data.train.next_batch(2000)
            model.train_step.run(feed_dict = {
                model.images: batch[0],
                model.labels: batch[1],
                model.keep_prob: 0.5
            })
            if batch_idx % 10 == 0:
                test_acc = model.accuracy.eval(feed_dict = {
                    model.images: data.test.images,
                    model.labels: data.test.labels,
                    model.keep_prob: 1.0
                })
                pruner.update_epoch(batch_idx / 10,sess)
                print('test accuracy', test_acc)
                
        
        test_acc = model.accuracy.eval(feed_dict = {
            model.images: data.test.images,
            model.labels: data.test.labels,
            model.keep_prob: 1.0
        })
        print('final result is', test_acc)

130
131
132

if __name__ == '__main__':
    main()