supernet.py 3.75 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
11
12
13
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from nni.retiarii.oneshot.pytorch import SinglePathTrainer
Yuge Zhang's avatar
Yuge Zhang committed
14
15

from network import ShuffleNetV2OneShot, load_and_parse_state_dict
16
from utils import CrossEntropyLabelSmooth, accuracy, ToBGRTensor
Yuge Zhang's avatar
Yuge Zhang committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

logger = logging.getLogger("nni.spos.supernet")

if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Supernet Training")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--load-checkpoint", action="store_true", default=False)
    parser.add_argument("--spos-preprocessing", action="store_true", default=False,
                        help="When true, image values will range from 0 to 255 and use BGR "
                             "(as in original repo).")
    parser.add_argument("--workers", type=int, default=4)
    parser.add_argument("--batch-size", type=int, default=768)
    parser.add_argument("--epochs", type=int, default=120)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    model = ShuffleNetV2OneShot()
    if args.load_checkpoint:
        if not args.spos_preprocessing:
            logger.warning("You might want to use SPOS preprocessing if you are loading their checkpoints.")
50
        model.load_state_dict(load_and_parse_state_dict(), strict=False)
51
        logger.info(f'Model loaded from ./data/checkpoint-150000.pth.tar')
Yuge Zhang's avatar
Yuge Zhang committed
52
53
54
55
56
57
58
59
60
61
    model.cuda()
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lambda step: (1.0 - step / args.epochs)
                                                  if step <= args.epochs else 0,
                                                  last_epoch=-1)
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    if args.spos_preprocessing:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.RandomHorizontalFlip(0.5),
            ToBGRTensor(),
        ])
    else:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ToTensor()
        ])
    train_dataset = datasets.ImageNet(args.imagenet_dir, split='train', transform=trans)
    val_dataset = datasets.ImageNet(args.imagenet_dir, split='val', transform=trans)
    trainer = SinglePathTrainer(model, criterion, accuracy, optimizer,
                                args.epochs, train_dataset, val_dataset,
                                batch_size=args.batch_size,
                                log_frequency=args.log_frequency, workers=args.workers)
    trainer.fit()