search.py 8.33 KB
Newer Older
1
import time
2
import json
3
4
5
6
7
8
9
10
11
12
13
import random
import logging
import argparse
import numpy as np
import torch
import torchvision.transforms as transforms
import torchvision.datasets as datasets

import nni
from nn_meter import load_latency_predictor
import nni.retiarii.nn.pytorch as nn
14
import nni.retiarii.strategy as strategy
15
16
17
from nni.retiarii.evaluator.functional import FunctionalEvaluator
from nni.retiarii.utils import original_state_dict_hooks
from nni.retiarii.oneshot.pytorch.utils import AverageMeterGroup
18
19
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from network import ShuffleNetV2OneShot, load_and_parse_state_dict
from utils import CrossEntropyLabelSmooth, accuracy, ToBGRTensor, get_archchoice_by_model

logger = logging.getLogger("nni.spos.search")


def retrain_bn(model, criterion, max_iters, log_freq, loader):
    with torch.no_grad():
        logger.info("Clear BN statistics...")
        for m in model.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.running_mean = torch.zeros_like(m.running_mean)
                m.running_var = torch.ones_like(m.running_var)

        logger.info("Train BN with training set (BN sanitize)...")
        model.train()
        meters = AverageMeterGroup()
        for step in range(max_iters):
            inputs, targets = next(iter(loader))
            inputs, targets = inputs.to('cuda'), targets.to('cuda')
            logits = model(inputs)
            loss = criterion(logits, targets)
            metrics = accuracy(logits, targets)
            metrics["loss"] = loss.item()
            meters.update(metrics)
            if step % log_freq == 0 or step + 1 == max_iters:
                logger.info("Train Step [%d/%d] %s", step + 1, max_iters, meters)


def test_acc(model, criterion, log_freq, loader):
    logger.info("Start testing...")
    model.eval()
    meters = AverageMeterGroup()
    start_time = time.time()
    with torch.no_grad():
        for step, (inputs, targets) in enumerate(loader):
            inputs, targets = inputs.to('cuda'), targets.to('cuda')
            logits = model(inputs)
            loss = criterion(logits, targets)
            metrics = accuracy(logits, targets)
            metrics["loss"] = loss.item()
            meters.update(metrics)
            if step % log_freq == 0 or step + 1 == len(loader):
                logger.info("Valid Step [%d/%d] time %.3fs acc1 %.4f acc5 %.4f loss %.4f",
                            step + 1, len(loader), time.time() - start_time,
                            meters.acc1.avg, meters.acc5.avg, meters.loss.avg)
    return meters.acc1.avg


def evaluate_acc(class_cls, criterion, args, train_dataset, val_dataset):
    model = class_cls()
    with original_state_dict_hooks(model):
        model.load_state_dict(load_and_parse_state_dict(args.checkpoint), strict=False)
    model.cuda()
    
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, num_workers=args.workers)
    test_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.test_batch_size, num_workers=args.workers)

    acc_before = test_acc(model, criterion, args.log_frequency, test_loader)
    nni.report_intermediate_result(acc_before)

    retrain_bn(model, criterion, args.train_iters, args.log_frequency, train_loader)
    acc = test_acc(model, criterion, args.log_frequency, test_loader)
    assert isinstance(acc, float)
    nni.report_intermediate_result(acc)
    nni.report_final_result(acc)
86
87
88
89
90


class LatencyFilter:
    def __init__(self, threshold, predictor, predictor_version=None, reverse=False):
        """
91
92
        Filter the models according to predicted latency. If the predicted latency of the ir model is larger than
        the given threshold, the ir model will be filtered and will not be considered as a searched architecture.
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

        Parameters
        ----------
        threshold: `float`
            the threshold of latency
        config, hardware:
            determine the targeted device
        reverse: `bool`
            if reverse is `False`, then the model returns `True` when `latency < threshold`,
            else otherwise
        """
        self.predictors = load_latency_predictor(predictor, predictor_version)
        self.threshold = threshold

    def __call__(self, ir_model):
        latency = self.predictors.predict(ir_model, 'nni-ir')
        return latency < self.threshold


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def _main():
    parser = argparse.ArgumentParser("SPOS Evolutional Search")
    parser.add_argument("--port", type=int, default=8084)
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--checkpoint", type=str, default="./data/checkpoint-150000.pth.tar")
    parser.add_argument("--spos-preprocessing", action="store_true", default=False,
                        help="When true, image values will range from 0 to 255 and use BGR "
                             "(as in original repo).")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--workers", type=int, default=6)
    parser.add_argument("--train-batch-size", type=int, default=128)
    parser.add_argument("--train-iters", type=int, default=200)
    parser.add_argument("--test-batch-size", type=int, default=512)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--label-smoothing", type=float, default=0.1)
    parser.add_argument("--evolution-sample-size", type=int, default=10)
    parser.add_argument("--evolution-population-size", type=int, default=50)
    parser.add_argument("--evolution-cycles", type=int, default=10)
    parser.add_argument("--latency-filter", type=str, default=None,
                        help="Apply latency filter by calling the name of the applied hardware.")
    parser.add_argument("--latency-threshold", type=float, default=100)

    args = parser.parse_args()

    # use a fixed set of image will improve the performance
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    assert torch.cuda.is_available()

    base_model = ShuffleNetV2OneShot()
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    if args.spos_preprocessing:
        # ``nni.trace`` is used to make transforms serializable, so that the trials can run other processes or on remote servers.
        trans = nni.trace(transforms.Compose)([
            nni.trace(transforms.RandomResizedCrop)(224),
            nni.trace(transforms.ColorJitter)(brightness=0.4, contrast=0.4, saturation=0.4),
            nni.trace(transforms.RandomHorizontalFlip)(0.5),
            nni.trace(ToBGRTensor)(),
        ])
    else:
        # ``nni.trace`` is used to make transforms serializable, so that the trials can run other processes or on remote servers.
        trans = nni.trace(transforms.Compose)([
            nni.trace(transforms.RandomResizedCrop)(224),
            nni.trace(transforms.ToTensor)()
        ])
    train_dataset = nni.trace(datasets.ImageNet)(args.imagenet_dir, split='train', transform=trans)
    val_dataset = nni.trace(datasets.ImageNet)(args.imagenet_dir, split='val', transform=trans)

    if args.latency_filter:
        latency_filter = LatencyFilter(threshold=args.latency_threshold, predictor=args.latency_filter)
    else:
        latency_filter = None

    evaluator = FunctionalEvaluator(evaluate_acc, criterion=criterion, args=args, train_dataset=train_dataset, val_dataset=val_dataset)
    evolution_strategy = strategy.RegularizedEvolution(
        model_filter=latency_filter,
        sample_size=args.evolution_sample_size, population_size=args.evolution_population_size, cycles=args.evolution_cycles)
    exp = RetiariiExperiment(base_model, evaluator, strategy=evolution_strategy)
174
175
176
177

    exp_config = RetiariiExeConfig('local')
    exp_config.trial_concurrency = 2
    exp_config.trial_gpu_number = 1
178
    exp_config.max_trial_number = args.evolution_cycles
179
180
    exp_config.training_service.use_active_gpu = False
    exp_config.execution_engine = 'base'
181
    exp_config.dummy_input = [1, 3, 224, 224]
182

183
    exp.run(exp_config, args.port)
184
185
186
187
188
189
190

    print('Exported models:')
    for i, model in enumerate(exp.export_top_models(formatter='dict')):
        print(model)
        with open(f'architecture_final_{i}.json', 'w') as f: 
            json.dump(get_archchoice_by_model(model), f, indent=4)

191
if __name__ == "__main__":
192
    _main()