inject_nn.py 12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import inspect
import logging

import torch
import torch.nn as nn

from nni.retiarii.utils import add_record, del_record, version_larger_equal

_logger = logging.getLogger(__name__)

def wrap_module(original_class):
    orig_init = original_class.__init__
    argname_list = list(inspect.signature(original_class).parameters.keys())
    # Make copy of original __init__, so we can call it without recursion
    original_class.bak_init_for_inject = orig_init
    if hasattr(original_class, '__del__'):
        orig_del = original_class.__del__
        original_class.bak_del_for_inject = orig_del
    else:
        orig_del = None
        original_class.bak_del_for_inject = None

    def __init__(self, *args, **kws):
        full_args = {}
        full_args.update(kws)
        for i, arg in enumerate(args):
            full_args[argname_list[i]] = arg
        add_record(id(self), full_args)

        orig_init(self, *args, **kws)  # Call the original __init__

    def __del__(self):
        del_record(id(self))
        if orig_del is not None:
            orig_del(self)

    original_class.__init__ = __init__  # Set the class' __init__ to the new one
    original_class.__del__ = __del__
    return original_class

def unwrap_module(wrapped_class):
    if hasattr(wrapped_class, 'bak_init_for_inject'):
        wrapped_class.__init__ = wrapped_class.bak_init_for_inject
        delattr(wrapped_class, 'bak_init_for_inject')
    if hasattr(wrapped_class, 'bak_del_for_inject'):
        if wrapped_class.bak_del_for_inject is not None:
            wrapped_class.__del__ = wrapped_class.bak_del_for_inject
        delattr(wrapped_class, 'bak_del_for_inject')
    return None

def remove_inject_pytorch_nn():
    Identity = unwrap_module(nn.Identity)
    Linear = unwrap_module(nn.Linear)
    Conv1d = unwrap_module(nn.Conv1d)
    Conv2d = unwrap_module(nn.Conv2d)
    Conv3d = unwrap_module(nn.Conv3d)
    ConvTranspose1d = unwrap_module(nn.ConvTranspose1d)
    ConvTranspose2d = unwrap_module(nn.ConvTranspose2d)
    ConvTranspose3d = unwrap_module(nn.ConvTranspose3d)
    Threshold = unwrap_module(nn.Threshold)
    ReLU = unwrap_module(nn.ReLU)
    Hardtanh = unwrap_module(nn.Hardtanh)
    ReLU6 = unwrap_module(nn.ReLU6)
    Sigmoid = unwrap_module(nn.Sigmoid)
    Tanh = unwrap_module(nn.Tanh)
    Softmax = unwrap_module(nn.Softmax)
    Softmax2d = unwrap_module(nn.Softmax2d)
    LogSoftmax = unwrap_module(nn.LogSoftmax)
    ELU = unwrap_module(nn.ELU)
    SELU = unwrap_module(nn.SELU)
    CELU = unwrap_module(nn.CELU)
    GLU = unwrap_module(nn.GLU)
    GELU = unwrap_module(nn.GELU)
    Hardshrink = unwrap_module(nn.Hardshrink)
    LeakyReLU = unwrap_module(nn.LeakyReLU)
    LogSigmoid = unwrap_module(nn.LogSigmoid)
    Softplus = unwrap_module(nn.Softplus)
    Softshrink = unwrap_module(nn.Softshrink)
    MultiheadAttention = unwrap_module(nn.MultiheadAttention)
    PReLU = unwrap_module(nn.PReLU)
    Softsign = unwrap_module(nn.Softsign)
    Softmin = unwrap_module(nn.Softmin)
    Tanhshrink = unwrap_module(nn.Tanhshrink)
    RReLU = unwrap_module(nn.RReLU)
    AvgPool1d = unwrap_module(nn.AvgPool1d)
    AvgPool2d = unwrap_module(nn.AvgPool2d)
    AvgPool3d = unwrap_module(nn.AvgPool3d)
    MaxPool1d = unwrap_module(nn.MaxPool1d)
    MaxPool2d = unwrap_module(nn.MaxPool2d)
    MaxPool3d = unwrap_module(nn.MaxPool3d)
    MaxUnpool1d = unwrap_module(nn.MaxUnpool1d)
    MaxUnpool2d = unwrap_module(nn.MaxUnpool2d)
    MaxUnpool3d = unwrap_module(nn.MaxUnpool3d)
    FractionalMaxPool2d = unwrap_module(nn.FractionalMaxPool2d)
    FractionalMaxPool3d = unwrap_module(nn.FractionalMaxPool3d)
    LPPool1d = unwrap_module(nn.LPPool1d)
    LPPool2d = unwrap_module(nn.LPPool2d)
    LocalResponseNorm = unwrap_module(nn.LocalResponseNorm)
    BatchNorm1d = unwrap_module(nn.BatchNorm1d)
    BatchNorm2d = unwrap_module(nn.BatchNorm2d)
    BatchNorm3d = unwrap_module(nn.BatchNorm3d)
    InstanceNorm1d = unwrap_module(nn.InstanceNorm1d)
    InstanceNorm2d = unwrap_module(nn.InstanceNorm2d)
    InstanceNorm3d = unwrap_module(nn.InstanceNorm3d)
    LayerNorm = unwrap_module(nn.LayerNorm)
    GroupNorm = unwrap_module(nn.GroupNorm)
    SyncBatchNorm = unwrap_module(nn.SyncBatchNorm)
    Dropout = unwrap_module(nn.Dropout)
    Dropout2d = unwrap_module(nn.Dropout2d)
    Dropout3d = unwrap_module(nn.Dropout3d)
    AlphaDropout = unwrap_module(nn.AlphaDropout)
    FeatureAlphaDropout = unwrap_module(nn.FeatureAlphaDropout)
    ReflectionPad1d = unwrap_module(nn.ReflectionPad1d)
    ReflectionPad2d = unwrap_module(nn.ReflectionPad2d)
    ReplicationPad2d = unwrap_module(nn.ReplicationPad2d)
    ReplicationPad1d = unwrap_module(nn.ReplicationPad1d)
    ReplicationPad3d = unwrap_module(nn.ReplicationPad3d)
    CrossMapLRN2d = unwrap_module(nn.CrossMapLRN2d)
    Embedding = unwrap_module(nn.Embedding)
    EmbeddingBag = unwrap_module(nn.EmbeddingBag)
    RNNBase = unwrap_module(nn.RNNBase)
    RNN = unwrap_module(nn.RNN)
    LSTM = unwrap_module(nn.LSTM)
    GRU = unwrap_module(nn.GRU)
    RNNCellBase = unwrap_module(nn.RNNCellBase)
    RNNCell = unwrap_module(nn.RNNCell)
    LSTMCell = unwrap_module(nn.LSTMCell)
    GRUCell = unwrap_module(nn.GRUCell)
    PixelShuffle = unwrap_module(nn.PixelShuffle)
    Upsample = unwrap_module(nn.Upsample)
    UpsamplingNearest2d = unwrap_module(nn.UpsamplingNearest2d)
    UpsamplingBilinear2d = unwrap_module(nn.UpsamplingBilinear2d)
    PairwiseDistance = unwrap_module(nn.PairwiseDistance)
    AdaptiveMaxPool1d = unwrap_module(nn.AdaptiveMaxPool1d)
    AdaptiveMaxPool2d = unwrap_module(nn.AdaptiveMaxPool2d)
    AdaptiveMaxPool3d = unwrap_module(nn.AdaptiveMaxPool3d)
    AdaptiveAvgPool1d = unwrap_module(nn.AdaptiveAvgPool1d)
    AdaptiveAvgPool2d = unwrap_module(nn.AdaptiveAvgPool2d)
    AdaptiveAvgPool3d = unwrap_module(nn.AdaptiveAvgPool3d)
    TripletMarginLoss = unwrap_module(nn.TripletMarginLoss)
    ZeroPad2d = unwrap_module(nn.ZeroPad2d)
    ConstantPad1d = unwrap_module(nn.ConstantPad1d)
    ConstantPad2d = unwrap_module(nn.ConstantPad2d)
    ConstantPad3d = unwrap_module(nn.ConstantPad3d)
    Bilinear = unwrap_module(nn.Bilinear)
    CosineSimilarity = unwrap_module(nn.CosineSimilarity)
    Unfold = unwrap_module(nn.Unfold)
    Fold = unwrap_module(nn.Fold)
    AdaptiveLogSoftmaxWithLoss = unwrap_module(nn.AdaptiveLogSoftmaxWithLoss)
    TransformerEncoder = unwrap_module(nn.TransformerEncoder)
    TransformerDecoder = unwrap_module(nn.TransformerDecoder)
    TransformerEncoderLayer = unwrap_module(nn.TransformerEncoderLayer)
    TransformerDecoderLayer = unwrap_module(nn.TransformerDecoderLayer)
    Transformer = unwrap_module(nn.Transformer)
    Flatten = unwrap_module(nn.Flatten)
    Hardsigmoid = unwrap_module(nn.Hardsigmoid)

    if version_larger_equal(torch.__version__, '1.6.0'):
        Hardswish = unwrap_module(nn.Hardswish)

    if version_larger_equal(torch.__version__, '1.7.0'):
        SiLU = unwrap_module(nn.SiLU)
        Unflatten = unwrap_module(nn.Unflatten)
        TripletMarginWithDistanceLoss = unwrap_module(nn.TripletMarginWithDistanceLoss)

def inject_pytorch_nn():
    Identity = wrap_module(nn.Identity)
    Linear = wrap_module(nn.Linear)
    Conv1d = wrap_module(nn.Conv1d)
    Conv2d = wrap_module(nn.Conv2d)
    Conv3d = wrap_module(nn.Conv3d)
    ConvTranspose1d = wrap_module(nn.ConvTranspose1d)
    ConvTranspose2d = wrap_module(nn.ConvTranspose2d)
    ConvTranspose3d = wrap_module(nn.ConvTranspose3d)
    Threshold = wrap_module(nn.Threshold)
    ReLU = wrap_module(nn.ReLU)
    Hardtanh = wrap_module(nn.Hardtanh)
    ReLU6 = wrap_module(nn.ReLU6)
    Sigmoid = wrap_module(nn.Sigmoid)
    Tanh = wrap_module(nn.Tanh)
    Softmax = wrap_module(nn.Softmax)
    Softmax2d = wrap_module(nn.Softmax2d)
    LogSoftmax = wrap_module(nn.LogSoftmax)
    ELU = wrap_module(nn.ELU)
    SELU = wrap_module(nn.SELU)
    CELU = wrap_module(nn.CELU)
    GLU = wrap_module(nn.GLU)
    GELU = wrap_module(nn.GELU)
    Hardshrink = wrap_module(nn.Hardshrink)
    LeakyReLU = wrap_module(nn.LeakyReLU)
    LogSigmoid = wrap_module(nn.LogSigmoid)
    Softplus = wrap_module(nn.Softplus)
    Softshrink = wrap_module(nn.Softshrink)
    MultiheadAttention = wrap_module(nn.MultiheadAttention)
    PReLU = wrap_module(nn.PReLU)
    Softsign = wrap_module(nn.Softsign)
    Softmin = wrap_module(nn.Softmin)
    Tanhshrink = wrap_module(nn.Tanhshrink)
    RReLU = wrap_module(nn.RReLU)
    AvgPool1d = wrap_module(nn.AvgPool1d)
    AvgPool2d = wrap_module(nn.AvgPool2d)
    AvgPool3d = wrap_module(nn.AvgPool3d)
    MaxPool1d = wrap_module(nn.MaxPool1d)
    MaxPool2d = wrap_module(nn.MaxPool2d)
    MaxPool3d = wrap_module(nn.MaxPool3d)
    MaxUnpool1d = wrap_module(nn.MaxUnpool1d)
    MaxUnpool2d = wrap_module(nn.MaxUnpool2d)
    MaxUnpool3d = wrap_module(nn.MaxUnpool3d)
    FractionalMaxPool2d = wrap_module(nn.FractionalMaxPool2d)
    FractionalMaxPool3d = wrap_module(nn.FractionalMaxPool3d)
    LPPool1d = wrap_module(nn.LPPool1d)
    LPPool2d = wrap_module(nn.LPPool2d)
    LocalResponseNorm = wrap_module(nn.LocalResponseNorm)
    BatchNorm1d = wrap_module(nn.BatchNorm1d)
    BatchNorm2d = wrap_module(nn.BatchNorm2d)
    BatchNorm3d = wrap_module(nn.BatchNorm3d)
    InstanceNorm1d = wrap_module(nn.InstanceNorm1d)
    InstanceNorm2d = wrap_module(nn.InstanceNorm2d)
    InstanceNorm3d = wrap_module(nn.InstanceNorm3d)
    LayerNorm = wrap_module(nn.LayerNorm)
    GroupNorm = wrap_module(nn.GroupNorm)
    SyncBatchNorm = wrap_module(nn.SyncBatchNorm)
    Dropout = wrap_module(nn.Dropout)
    Dropout2d = wrap_module(nn.Dropout2d)
    Dropout3d = wrap_module(nn.Dropout3d)
    AlphaDropout = wrap_module(nn.AlphaDropout)
    FeatureAlphaDropout = wrap_module(nn.FeatureAlphaDropout)
    ReflectionPad1d = wrap_module(nn.ReflectionPad1d)
    ReflectionPad2d = wrap_module(nn.ReflectionPad2d)
    ReplicationPad2d = wrap_module(nn.ReplicationPad2d)
    ReplicationPad1d = wrap_module(nn.ReplicationPad1d)
    ReplicationPad3d = wrap_module(nn.ReplicationPad3d)
    CrossMapLRN2d = wrap_module(nn.CrossMapLRN2d)
    Embedding = wrap_module(nn.Embedding)
    EmbeddingBag = wrap_module(nn.EmbeddingBag)
    RNNBase = wrap_module(nn.RNNBase)
    RNN = wrap_module(nn.RNN)
    LSTM = wrap_module(nn.LSTM)
    GRU = wrap_module(nn.GRU)
    RNNCellBase = wrap_module(nn.RNNCellBase)
    RNNCell = wrap_module(nn.RNNCell)
    LSTMCell = wrap_module(nn.LSTMCell)
    GRUCell = wrap_module(nn.GRUCell)
    PixelShuffle = wrap_module(nn.PixelShuffle)
    Upsample = wrap_module(nn.Upsample)
    UpsamplingNearest2d = wrap_module(nn.UpsamplingNearest2d)
    UpsamplingBilinear2d = wrap_module(nn.UpsamplingBilinear2d)
    PairwiseDistance = wrap_module(nn.PairwiseDistance)
    AdaptiveMaxPool1d = wrap_module(nn.AdaptiveMaxPool1d)
    AdaptiveMaxPool2d = wrap_module(nn.AdaptiveMaxPool2d)
    AdaptiveMaxPool3d = wrap_module(nn.AdaptiveMaxPool3d)
    AdaptiveAvgPool1d = wrap_module(nn.AdaptiveAvgPool1d)
    AdaptiveAvgPool2d = wrap_module(nn.AdaptiveAvgPool2d)
    AdaptiveAvgPool3d = wrap_module(nn.AdaptiveAvgPool3d)
    TripletMarginLoss = wrap_module(nn.TripletMarginLoss)
    ZeroPad2d = wrap_module(nn.ZeroPad2d)
    ConstantPad1d = wrap_module(nn.ConstantPad1d)
    ConstantPad2d = wrap_module(nn.ConstantPad2d)
    ConstantPad3d = wrap_module(nn.ConstantPad3d)
    Bilinear = wrap_module(nn.Bilinear)
    CosineSimilarity = wrap_module(nn.CosineSimilarity)
    Unfold = wrap_module(nn.Unfold)
    Fold = wrap_module(nn.Fold)
    AdaptiveLogSoftmaxWithLoss = wrap_module(nn.AdaptiveLogSoftmaxWithLoss)
    TransformerEncoder = wrap_module(nn.TransformerEncoder)
    TransformerDecoder = wrap_module(nn.TransformerDecoder)
    TransformerEncoderLayer = wrap_module(nn.TransformerEncoderLayer)
    TransformerDecoderLayer = wrap_module(nn.TransformerDecoderLayer)
    Transformer = wrap_module(nn.Transformer)
    Flatten = wrap_module(nn.Flatten)
    Hardsigmoid = wrap_module(nn.Hardsigmoid)

    if version_larger_equal(torch.__version__, '1.6.0'):
        Hardswish = wrap_module(nn.Hardswish)

    if version_larger_equal(torch.__version__, '1.7.0'):
        SiLU = wrap_module(nn.SiLU)
        Unflatten = wrap_module(nn.Unflatten)
        TripletMarginWithDistanceLoss = wrap_module(nn.TripletMarginWithDistanceLoss)