test.py 2.02 KB
Newer Older
1
2
3
import random

import nni.retiarii.nn.pytorch as nn
4
import nni.retiarii.strategy as strategy
5
import nni.retiarii.trainer.pytorch.lightning as pl
6
import torch.nn.functional as F
7
8
9
10
11
from nni.retiarii import blackbox_module as bm
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37


class Net(nn.Module):
    def __init__(self, hidden_size):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.fc1 = nn.LayerChoice([
            nn.Linear(4*4*50, hidden_size),
            nn.Linear(4*4*50, hidden_size, bias=False)
        ])
        self.fc2 = nn.Linear(hidden_size, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4*4*50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


if __name__ == '__main__':
    base_model = Net(128)
38
39
40
41
42
43
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = bm(MNIST)(root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = bm(MNIST)(root='data/mnist', train=False, download=True, transform=transform)
    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=2)
44

45
    simple_strategy = strategy.Random()
46

47
    exp = RetiariiExperiment(base_model, trainer, [], simple_strategy)
48
49
50
51
52
53
54
55

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnist_search'
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 10
    exp_config.training_service.use_active_gpu = False

    exp.run(exp_config, 8081 + random.randint(0, 100))