search.py 2.19 KB
Newer Older
Chi Song's avatar
Chi Song committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import sys
import time
from argparse import ArgumentParser

import torch
import torch.nn as nn

from nni.nas.pytorch.callbacks import ArchitectureCheckpoint
from nni.nas.pytorch.pdarts import PdartsTrainer

# prevent it to be reordered.
if True:
    sys.path.append('../darts')
    from utils import accuracy
    from model import CNN
    import datasets


23
logger = logging.getLogger('nni')
Chi Song's avatar
Chi Song committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62


if __name__ == "__main__":
    parser = ArgumentParser("pdarts")
    parser.add_argument('--add_layers', action='append',
                        default=[0, 6, 12], help='add layers')
    parser.add_argument("--nodes", default=4, type=int)
    parser.add_argument("--layers", default=5, type=int)
    parser.add_argument("--batch-size", default=64, type=int)
    parser.add_argument("--log-frequency", default=1, type=int)
    parser.add_argument("--epochs", default=50, type=int)
    args = parser.parse_args()

    logger.info("loading data")
    dataset_train, dataset_valid = datasets.get_dataset("cifar10")

    def model_creator(layers):
        model = CNN(32, 3, 16, 10, layers, n_nodes=args.nodes)
        criterion = nn.CrossEntropyLoss()

        optim = torch.optim.SGD(model.parameters(), 0.025, momentum=0.9, weight_decay=3.0E-4)
        lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, args.epochs, eta_min=0.001)

        return model, criterion, optim, lr_scheduler

    logger.info("initializing trainer")
    trainer = PdartsTrainer(model_creator,
                            layers=args.layers,
                            metrics=lambda output, target: accuracy(output, target, topk=(1,)),
                            pdarts_num_layers=[0, 6, 12],
                            pdarts_num_to_drop=[3, 2, 2],
                            num_epochs=args.epochs,
                            dataset_train=dataset_train,
                            dataset_valid=dataset_valid,
                            batch_size=args.batch_size,
                            log_frequency=args.log_frequency,
                            callbacks=[ArchitectureCheckpoint("./checkpoints")])
    logger.info("training")
    trainer.train()