test.py 2.23 KB
Newer Older
1
2
3
4
5
import os
import sys
import torch
from pathlib import Path

6
7
import nni.retiarii.evaluator.pytorch.lightning as pl
from nni.retiarii import serialize
8
from base_mnasnet import MNASNet
9
from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig
10
from nni.retiarii.strategy import TPEStrategy
11
12
13
from torchvision import transforms
from torchvision.datasets import CIFAR10

14
15
16
17
18
19
20
21
22
23
from mutator import BlockMutator

if __name__ == '__main__':
    _DEFAULT_DEPTHS = [16, 24, 40, 80, 96, 192, 320]
    _DEFAULT_CONVOPS = ["dconv", "mconv", "mconv", "mconv", "mconv", "mconv", "mconv"]
    _DEFAULT_SKIPS = [False, True, True, True, True, True, True]
    _DEFAULT_KERNEL_SIZES = [3, 3, 5, 5, 3, 5, 3]
    _DEFAULT_NUM_LAYERS = [1, 3, 3, 3, 2, 4, 1]

    base_model = MNASNet(0.5, _DEFAULT_DEPTHS, _DEFAULT_CONVOPS, _DEFAULT_KERNEL_SIZES,
24
                         _DEFAULT_NUM_LAYERS, _DEFAULT_SKIPS)
25
26
27
28
29
30
31
32
33
34
35

    train_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
    valid_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])
36
37
    train_dataset = serialize(CIFAR10, root='data/cifar10', train=True, download=True, transform=train_transform)
    test_dataset = serialize(CIFAR10, root='data/cifar10', train=False, download=True, transform=valid_transform)
38
39
40
41
42
43
44
45
    trainer = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                max_epochs=1, limit_train_batches=0.2)

    applied_mutators = [
        BlockMutator('mutable_0'),
        BlockMutator('mutable_1')
    ]
46

47
    simple_strategy = TPEStrategy()
48

49
    exp = RetiariiExperiment(base_model, trainer, applied_mutators, simple_strategy)
50
51
52
53
54
55
56

    exp_config = RetiariiExeConfig('local')
    exp_config.experiment_name = 'mnasnet_search'
    exp_config.trial_concurrency = 2
    exp_config.max_trial_number = 10
    exp_config.training_service.use_active_gpu = False

57
    exp.run(exp_config, 8097)