test_oneshot.py 3.03 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import json
import numpy as np
import os
import sys
import torch
import torch.nn as nn
from pathlib import Path
from torchvision import transforms
from torchvision.datasets import CIFAR10

11
from nni.retiarii.experiment.pytorch import RetiariiExperiment
12
from nni.retiarii.oneshot.pytorch import DartsTrainer
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

from darts_model import CNN

class Cutout(object):
    def __init__(self, length):
        self.length = length

    def __call__(self, img):
        h, w = img.size(1), img.size(2)
        mask = np.ones((h, w), np.float32)
        y = np.random.randint(h)
        x = np.random.randint(w)

        y1 = np.clip(y - self.length // 2, 0, h)
        y2 = np.clip(y + self.length // 2, 0, h)
        x1 = np.clip(x - self.length // 2, 0, w)
        x2 = np.clip(x + self.length // 2, 0, w)

        mask[y1: y2, x1: x2] = 0.
        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img *= mask

        return img


def get_dataset(cls, cutout_length=0):
    MEAN = [0.49139968, 0.48215827, 0.44653124]
    STD = [0.24703233, 0.24348505, 0.26158768]
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize(MEAN, STD)
    ]
    cutout = []
    if cutout_length > 0:
        cutout.append(Cutout(cutout_length))

    train_transform = transforms.Compose(transf + normalize + cutout)
    valid_transform = transforms.Compose(normalize)

    if cls == "cifar10":
58
59
        dataset_train = CIFAR10(root="./data/cifar10", train=True, download=True, transform=train_transform)
        dataset_valid = CIFAR10(root="./data/cifar10", train=False, download=True, transform=valid_transform)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    else:
        raise NotImplementedError
    return dataset_train, dataset_valid

def accuracy(output, target, topk=(1,)):
    """ Computes the precision@k for the specified values of k """
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    # one-hot case
    if target.ndimension() > 1:
        target = target.max(1)[1]

    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = dict()
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res["acc{}".format(k)] = correct_k.mul_(1.0 / batch_size).item()
    return res

if __name__ == '__main__':
    base_model = CNN(32, 3, 16, 10, 8)

    dataset_train, dataset_valid = get_dataset("cifar10")
    criterion = nn.CrossEntropyLoss()
    optim = torch.optim.SGD(base_model.parameters(), 0.025, momentum=0.9, weight_decay=3.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, 50, eta_min=0.001)
    trainer = DartsTrainer(
        model=base_model,
        loss=criterion,
        metrics=lambda output, target: accuracy(output, target, topk=(1,)),
        optimizer=optim,
        num_epochs=50,
        dataset=dataset_train,
        batch_size=32,
        log_frequency=10,
        unrolled=False
    )

    exp = RetiariiExperiment(base_model, trainer)
    exp.run()