APoZ_torch_cifar10.py 4.71 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import ActivationAPoZRankFilterPruner
from models.cifar10.vgg import VGG


def train(model, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.cross_entropy(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))


def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, acc))
    return acc


def main():
    torch.manual_seed(0)
Cjkkkk's avatar
Cjkkkk committed
44
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    train_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=True, download=True,
                         transform=transforms.Compose([
                             transforms.Pad(4),
                             transforms.RandomCrop(32),
                             transforms.RandomHorizontalFlip(),
                             transforms.ToTensor(),
                             transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
                         ])),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.CIFAR10('./data.cifar10', train=False, transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        ])),
        batch_size=200, shuffle=False)

    model = VGG(depth=16)
    model.to(device)

    # Train the base VGG-16 model
    print('=' * 10 + 'Train the unpruned base model' + '=' * 10)
    optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 160, 0)
    for epoch in range(160):
        train(model, device, train_loader, optimizer)
        test(model, device, test_loader)
        lr_scheduler.step(epoch)
    torch.save(model.state_dict(), 'vgg16_cifar10.pth')

    # Test base model accuracy
    print('=' * 10 + 'Test on the original model' + '=' * 10)
    model.load_state_dict(torch.load('vgg16_cifar10.pth'))
    test(model, device, test_loader)
    # top1 = 93.51%

    # Pruning Configuration, in paper 'PRUNING FILTERS FOR EFFICIENT CONVNETS',
    # Conv_1, Conv_8, Conv_9, Conv_10, Conv_11, Conv_12 are pruned with 50% sparsity, as 'VGG-16-pruned-A'
    configure_list = [{
        'sparsity': 0.5,
        'op_types': ['default'],
        'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
    }]

    # Prune model and test accuracy without fine tuning.
    print('=' * 10 + 'Test on the pruned model before fine tune' + '=' * 10)
    pruner = ActivationAPoZRankFilterPruner(model, configure_list)
    model = pruner.compress()
    test(model, device, test_loader)
    # top1 = 88.19%

    # Fine tune the pruned model for 40 epochs and test accuracy
    print('=' * 10 + 'Fine tuning' + '=' * 10)
    optimizer_finetune = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9, weight_decay=1e-4)
    best_top1 = 0
    for epoch in range(40):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer_finetune)
        top1 = test(model, device, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path='pruned_vgg16_cifar10.pth', mask_path='mask_vgg16_cifar10.pth')

    # Test the exported model
    print('=' * 10 + 'Test on the pruned model after fine tune' + '=' * 10)
    new_model = VGG(depth=16)
    new_model.to(device)
    new_model.load_state_dict(torch.load('pruned_vgg16_cifar10.pth'))
    test(new_model, device, test_loader)
    # top1 = 93.53%


if __name__ == '__main__':
    main()