test_oneshot.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
import pytest
from torchvision import transforms
from torchvision.datasets import MNIST
8
from torch.utils.data import Dataset, RandomSampler
9

10
11
import nni.retiarii.nn.pytorch as nn
from nni.retiarii import strategy, model_wrapper, basic_unit
12
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
13
14
from nni.retiarii.evaluator.pytorch.lightning import Classification, Regression, DataLoader
from nni.retiarii.nn.pytorch import LayerChoice, InputChoice, ValueChoice
Yuge Zhang's avatar
Yuge Zhang committed
15
from nni.retiarii.strategy import BaseStrategy
16
17


18
19
20
pytestmark = pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')


21
22
23
24
25
26
27
28
29
30
class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


31
@model_wrapper
32
33
class SimpleNet(nn.Module):
    def __init__(self, value_choice=True):
34
35
36
37
38
39
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
40
41
42
43
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
44
        ])
45
46
47
48
49
50
51
        self.dropout2 = nn.Dropout(0.5)
        if value_choice:
            hidden = nn.ValueChoice([32, 64, 128])
        else:
            hidden = 64
        self.fc1 = nn.Linear(9216, hidden)
        self.fc2 = nn.Linear(hidden, 10)
52
        self.rpfc = nn.Linear(10, 10)
53
        self.input_ch = InputChoice(2, 1)
54
55
56
57

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(self.conv2(x), 2)
58
59
60
61
62
63
64
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        x1 = self.rpfc(x)
        x = self.input_ch([x, x1])
65
66
67
68
        output = F.log_softmax(x, dim=1)
        return output


69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
@model_wrapper
class MultiHeadAttentionNet(nn.Module):
    def __init__(self, head_count):
        super().__init__()
        embed_dim = ValueChoice(candidates=[32, 64])
        self.linear1 = nn.Linear(128, embed_dim)
        self.mhatt = nn.MultiheadAttention(embed_dim, head_count)
        self.linear2 = nn.Linear(embed_dim, 1)

    def forward(self, batch):
        query, key, value = batch
        q, k, v = self.linear1(query), self.linear1(key), self.linear1(value)
        output, _ = self.mhatt(q, k, v, need_weights=False)
        y = self.linear2(output)
        return F.relu(y)


@model_wrapper
class ValueChoiceConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


@model_wrapper
class RepeatNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)
        self.rpfc = nn.Repeat(nn.Linear(10, 10), (1, 4))

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        x = self.rpfc(x)
        return F.log_softmax(x, dim=1)


140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
@model_wrapper
class CellNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.stem = nn.Conv2d(1, 5, 7, stride=4)
        self.cells = nn.Repeat(
            lambda index: nn.Cell({
                'conv1': lambda _, __, inp: nn.Conv2d(
                    (5 if index == 0 else 3 * 4) if inp is not None and inp < 1 else 4, 4, 1
                ),
                'conv2': lambda _, __, inp: nn.Conv2d(
                    (5 if index == 0 else 3 * 4) if inp is not None and inp < 1 else 4, 4, 3, padding=1
                ),
            }, 3, merge_op='loose_end'), (1, 3)
        )
        self.fc = nn.Linear(3 * 4, 10)

    def forward(self, x):
        x = self.stem(x)
        x = self.cells(x)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
@basic_unit
class MyOp(nn.Module):
    def __init__(self, some_ch):
        super().__init__()
        self.some_ch = some_ch
        self.batch_norm = nn.BatchNorm2d(some_ch)

    def forward(self, x):
        return self.batch_norm(x)


@model_wrapper
class CustomOpValueChoiceNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = MyOp(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


202
def _mnist_net(type_, evaluator_kwargs):
203
204
205
206
207
208
209
210
    if type_ == 'simple':
        base_model = SimpleNet(False)
    elif type_ == 'simple_value_choice':
        base_model = SimpleNet()
    elif type_ == 'value_choice':
        base_model = ValueChoiceConvNet()
    elif type_ == 'repeat':
        base_model = RepeatNet()
211
212
    elif type_ == 'cell':
        base_model = CellNet()
213
214
215
216
217
    elif type_ == 'custom_op':
        base_model = CustomOpValueChoiceNet()
    else:
        raise ValueError(f'Unsupported type: {type_}')
    
218
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
219
    train_dataset = MNIST('data/mnist', train=True, download=True, transform=transform)
220
    # Multi-GPU combined dataloader will break this subset sampler. Expected though.
221
222
223
224
225
    train_random_sampler = RandomSampler(train_dataset, True, int(len(train_dataset) / 20))
    train_loader = DataLoader(train_dataset, 64, sampler=train_random_sampler)
    valid_dataset = MNIST('data/mnist', train=False, download=True, transform=transform)
    valid_random_sampler = RandomSampler(valid_dataset, True, int(len(valid_dataset) / 20))
    valid_loader = DataLoader(valid_dataset, 64, sampler=valid_random_sampler)
226
    evaluator = Classification(train_dataloader=train_loader, val_dataloaders=valid_loader, **evaluator_kwargs)
227
228
229
230

    return base_model, evaluator


231
def _multihead_attention_net(evaluator_kwargs):
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    base_model = MultiHeadAttentionNet(1)

    class AttentionRandDataset(Dataset):
        def __init__(self, data_shape, gt_shape, len) -> None:
            super().__init__()
            self.datashape = data_shape
            self.gtshape = gt_shape
            self.len = len

        def __getitem__(self, index):
            q = torch.rand(self.datashape)
            k = torch.rand(self.datashape)
            v = torch.rand(self.datashape)
            gt = torch.rand(self.gtshape)
            return (q, k, v), gt

        def __len__(self):
            return self.len
250

251
252
253
254
    train_set = AttentionRandDataset((1, 128), (1, 1), 1000)
    val_set = AttentionRandDataset((1, 128), (1, 1), 500)
    train_loader = DataLoader(train_set, batch_size=32)
    val_loader = DataLoader(val_set, batch_size=32)
255

256
    evaluator = Regression(train_dataloader=train_loader, val_dataloaders=val_loader, **evaluator_kwargs)
257
    return base_model, evaluator
258
259


260
261
262
263
264
265
266
267
268
269
270
def _test_strategy(strategy_, support_value_choice=True, multi_gpu=False):
    evaluator_kwargs = {
        'max_epochs': 1
    }
    if multi_gpu:
        evaluator_kwargs.update(
            strategy='ddp',
            accelerator='gpu',
            devices=torch.cuda.device_count()
        )

271
272
    to_test = [
        # (model, evaluator), support_or_net
273
274
275
        (_mnist_net('simple', evaluator_kwargs), True),
        (_mnist_net('simple_value_choice', evaluator_kwargs), support_value_choice),
        (_mnist_net('value_choice', evaluator_kwargs), support_value_choice),
276
        (_mnist_net('repeat', evaluator_kwargs), support_value_choice),      # no strategy supports repeat currently
277
278
        (_mnist_net('custom_op', evaluator_kwargs), False),   # this is definitely a NO
        (_multihead_attention_net(evaluator_kwargs), support_value_choice),
279
    ]
280

281
    for (base_model, evaluator), support_or_not in to_test:
Yuge Zhang's avatar
Yuge Zhang committed
282
283
284
285
286
287
        if isinstance(strategy_, BaseStrategy):
            strategy = strategy_
        else:
            strategy = strategy_(base_model, evaluator)
        print('Testing:', type(strategy).__name__, type(base_model).__name__, type(evaluator).__name__, support_or_not)
        experiment = RetiariiExperiment(base_model, evaluator, strategy=strategy)
288

289
290
        config = RetiariiExeConfig()
        config.execution_engine = 'oneshot'
291

292
293
294
295
296
297
        if support_or_not:
            experiment.run(config)
            assert isinstance(experiment.export_top_models()[0], dict)
        else:
            with pytest.raises(TypeError, match='not supported'):
                experiment.run(config)
298
299


300
def test_darts():
301
    _test_strategy(strategy.DARTS())
302
303


304
305
306
307
308
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_darts_multi_gpu():
    _test_strategy(strategy.DARTS(), multi_gpu=True)


309
def test_proxyless():
310
    _test_strategy(strategy.Proxyless(), False)
311
312
313


def test_enas():
Yuge Zhang's avatar
Yuge Zhang committed
314
315
316
317
318
319
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn)
320
321


322
323
324
325
326
327
328
329
330
331
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_enas_multi_gpu():
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn, multi_gpu=True)


332
def test_random():
333
    _test_strategy(strategy.RandomOneShot())
334
335


336
337
def test_gumbel_darts():
    _test_strategy(strategy.GumbelDARTS())
338
339
340
341
342


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--exp', type=str, default='all', metavar='E',
343
                        help='experiment to run, default = all')
344
345
346
347
348
349
350
    args = parser.parse_args()

    if args.exp == 'all':
        test_darts()
        test_proxyless()
        test_enas()
        test_random()
351
        test_gumbel_darts()
352
353
    else:
        globals()[f'test_{args.exp}']()