README.md 16.3 KB
Newer Older
Scarlett Li's avatar
Scarlett Li committed
1
<div align="center">
2
<img src="docs/img/nni_logo.png" width="600"/>
3
4
5
6
</div>

<br/>

7
[![MIT licensed](https://img.shields.io/badge/license-MIT-brightgreen.svg)](LICENSE)
Gems Guo's avatar
Gems Guo committed
8
9
10
[![Issues](https://img.shields.io/github/issues-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen)
[![Bugs](https://img.shields.io/github/issues/Microsoft/nni/bug.svg)](https://github.com/Microsoft/nni/issues?q=is%3Aissue+is%3Aopen+label%3Abug)
[![Pull Requests](https://img.shields.io/github/issues-pr-raw/Microsoft/nni.svg)](https://github.com/Microsoft/nni/pulls?q=is%3Apr+is%3Aopen)
Scarlett Li's avatar
Scarlett Li committed
11
[![Version](https://img.shields.io/github/release/Microsoft/nni.svg)](https://github.com/Microsoft/nni/releases)
colorjam's avatar
colorjam committed
12
[![Documentation Status](https://readthedocs.org/projects/nni/badge/?version=stable)](https://nni.readthedocs.io/en/stable/?badge=stable)
13

14
NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our **[official documentation](https://nni.readthedocs.io/) ([简体中文版点这里](https://nni.readthedocs.io/zh/stable))**. Quick links:
15

16
17
18
19
20
* [Documentation homepage](https://nni.readthedocs.io/)
* [Installation guide](https://nni.readthedocs.io/en/stable/installation.html)
* [Tutorials](https://nni.readthedocs.io/en/stable/tutorials.html)
* [Python API reference](https://nni.readthedocs.io/en/stable/reference/python_api.html)
* [Releases](https://nni.readthedocs.io/en/stable/Release.html)
21

22
## What's NEW! &nbsp;<a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>
Scarlett Li's avatar
Scarlett Li committed
23

24
* **New release**: [v2.6 is available](https://github.com/microsoft/nni/releases/tag/v2.6) - _released on Jan-19-2022_
25
26
27
* **New demo available**: [Youtube entry](https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw) | [Bilibili 入口](https://space.bilibili.com/1649051673) - _last updated on May-26-2021_
* **New webinar**: [Introducing Retiarii: A deep learning exploratory-training framework on NNI](https://note.microsoft.com/MSR-Webinar-Retiarii-Registration-Live.html) - _scheduled on June-24-2021_
* **New community channel**: [Discussions](https://github.com/microsoft/nni/discussions)
Lijiaoa's avatar
Lijiaoa committed
28
* **New emoticons release**: [nnSpider](./docs/source/Tutorial/NNSpider.md)
29
30
31
<div align="center">
<a href="#nni-spider"><img width="100%" src="docs/img/emoicons/home.svg" /></a>
</div>
Chi Song's avatar
Chi Song committed
32

33
## NNI capabilities in a glance
Chi Song's avatar
Chi Song committed
34

Yuge Zhang's avatar
Yuge Zhang committed
35
36
<img src="docs/img/overview.svg" width="100%"/>

cruiseliu's avatar
cruiseliu committed
37
38
39
40
41
<table>
<tbody>
<tr align="center" valign="bottom">
<td></td>
<td>
42
<b>Hyperparameter Tuning</b>
cruiseliu's avatar
cruiseliu committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
<img src="docs/img/bar.png" />
</td>
<td>
<b>Neural Architecture Search</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Model Compression</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Algorithms</b>
</td>
<td>
<ul>
<li><b>Exhaustive search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gridsearch_tuner.GridSearchTuner">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.random_tuner.RandomTuner">Random</a></li>
</ul>
<li><b>Heuristic search</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperopt_tuner.HyperoptTuner">Anneal</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.evolution_tuner.EvolutionTuner">Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.hyperband_advisor.Hyperband">Hyperband</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.pbt_tuner.PBTTuner">PBT</a></li>
</ul>
<li><b>Bayesian optimization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.bohb_advisor.BOHB">BOHB</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.dngo_tuner.DNGOTuner">DNGO</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.gp_tuner.GPTuner">GP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.metis_tuner.MetisTuner">Metis</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.smac_tuner.SMACTuner">SMAC</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/reference/hpo.html#nni.algorithms.hpo.tpe_tuner.TpeTuner">TPE</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Multi-trial</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#grid-search-strategy">Grid Search</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#policy-based-rl-strategy">Policy Based RL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#random-strategy">Random</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#regularized-evolution-strategy">Regularized Evolution</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#tpe-strategy">TPE</a></li>
</ul>
<li><b>One-shot</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#darts-strategy">DARTS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#enas-strategy">ENAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#fbnet-strategy">FBNet</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#proxylessnas-strategy">ProxylessNAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/nas/exploration_strategy.html#spos-strategy">SPOS</a></li>
</ul>
</ul>
</td>
<td>
<ul>
<li><b>Pruning</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#level-pruner">Level</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#l1-norm-pruner">L1 Norm</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#taylor-fo-weight-pruner">Taylor FO Weight</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#movement-pruner">Movement</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#agp-pruner">AGP</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/pruner.html#auto-compress-pruner">Auto Compress</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/index.html">More...</a></li>
</ul>
<li><b>Quantization</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#naive-quantizer">Naive</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#qat-quantizer">QAT</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#lsq-quantizer">LSQ</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#observer-quantizer">Observer</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#dorefa-quantizer">DoReFa</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/compression/quantizer.html#bnn-quantizer">BNN</a></li>
</ul>
</ul>
</td>
<tr align="center" valign="bottom">
<td></td>
<td>
<b>Supported Frameworks</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Training Services</b>
<img src="docs/img/bar.png" />
</td>
<td>
<b>Tutorials</b>
<img src="docs/img/bar.png" />
</td>
</tr>
<tr valign="top">
<td align="center" valign="middle">
<b>Supports</b>
</td>
<td>
<ul>
<li>PyTorch</li>
<li>TensorFlow</li>
<li>Scikit-learn</li>
<li>XGBoost</li>
<li>LightGBM</li>
<li>MXNet</li>
<li>Caffe2</li>
<li>More...</li>
</ul>
</td>
<td>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/local.html">Local machine</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/remote.html">Remote SSH servers</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/aml.html">Azure Machine Learning (AML)</a></li>
<li><b>Kubernetes Based</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/openpai.html">OpenAPI</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/kubeflow.html">Kubeflow</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/frameworkcontroller.html">FrameworkController</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/adaptdl.html">AdaptDL</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/paidlc.html">PAI DLC</a></li>
</ul>
<li><a href="https://nni.readthedocs.io/en/latest/experiment/hybrid.html">Hybrid training services</a></li>
</ul>
</td>
<td>
<ul>
<li><b>HPO</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_pytorch/main.html">PyTorch</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hpo_quickstart_tensorflow/main.html">TensorFlow</a></li>
</ul>
<li><b>NAS</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/hello_nas.html">Hello NAS</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/nasbench_as_dataset.html">NAS Benchmarks</a></li>
</ul>
<li><b>Compression</b></li>
<ul>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_quick_start_mnist.html">Pruning</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/pruning_speed_up.html">Pruning Speedup</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_quick_start_mnist.html">Quantization</a></li>
<li><a href="https://nni.readthedocs.io/en/latest/tutorials/quantization_speed_up.html">Quantization Speedup</a></li>
</ul>
</ul>
</td>
</tbody>
</table>
Chi Song's avatar
Chi Song committed
196

197
## Installation
198

199
See the [NNI installation guide](https://nni.readthedocs.io/en/stable/installation.html) to install from pip, or build from source.
Chi Song's avatar
Chi Song committed
200

201
To install the current release:
Chi Song's avatar
Chi Song committed
202

203
204
205
```
$ pip install nni
```
Chi Song's avatar
Chi Song committed
206

207
208
209
To update NNI to the latest version, add `--upgrade` flag to the above commands.
  
## Run your first experiment
Chi Song's avatar
Chi Song committed
210

cruiseliu's avatar
cruiseliu committed
211
<!-- delete this before next release -->
Yuge Zhang's avatar
Yuge Zhang committed
212
213
214

**NOTE:** To run an experiment following instructions below, you need to build NNI from source. Installing from pip won't work until next release.

215
To run this experiment, you need to have [PyTorch](https://pytorch.org/) (as well as [torchvision](https://pytorch.org/vision/stable/index.html)) installed.
Chi Song's avatar
Chi Song committed
216

217
```shell
218
$ nnictl hello
219
```
Chi Song's avatar
Chi Song committed
220

221
It will generate `nni_hello_hpo` folder in your current working directory, which contains a minimum hyper-parameter tuning example. It will also prompt you to run
222

223
224
```shell
python nni_hello_hpo/main.py
Scarlett Li's avatar
Scarlett Li committed
225
```
Scarlett Li's avatar
Scarlett Li committed
226

227
228
to launch your first NNI experiment. Use the web portal URL shown in the console to monitor the running status of your experiment.

229
<img src="docs/static/img/webui.gif" alt="webui" width="100%"/>
230

231
For more usages, please see [NNI tutorials](https://nni.readthedocs.io/en/stable/tutorials.html).
232

233
## Contribution guidelines
234

235
If you want to contribute to NNI, be sure to review the [contribution guidelines](https://nni.readthedocs.io/en/stable/notes/contributing.html), which includes instructions of submitting feedbacks, best coding practices, and code of conduct.
236

237
238
239
We use [GitHub issues](https://github.com/microsoft/nni/issues) to track tracking requests and bugs.
Please use [NNI Discussion](https://github.com/microsoft/nni/discussions) for general questions and new ideas.
For questions of specific use cases, please go to [Stack Overflow](https://stackoverflow.com/questions/tagged/nni).
240

241
Participating discussions via the following IM groups is also welcomed.
JSong-Jia's avatar
JSong-Jia committed
242
243
244

|Gitter||WeChat|
|----|----|----|
245
|![image](https://user-images.githubusercontent.com/39592018/80665738-e0574a80-8acc-11ea-91bc-0836dc4cbf89.png)| OR |![image](https://github.com/scarlett2018/nniutil/raw/master/wechat.png)|
JSong-Jia's avatar
JSong-Jia committed
246

247
248
249
Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors.
We appreciate all contributions from community to make NNI thrive.

Lijiaoa's avatar
Lijiaoa committed
250
<a href="https://github.com/microsoft/nni/graphs/contributors"><img src="https://contrib.rocks/image?repo=microsoft/nni&max=240&columns=18" /></a>
Chi Song's avatar
Chi Song committed
251

252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
## Test status

### Essentials

| Type | Status |
| :---: | :---: |
| Fast test | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/fast%20test?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=54&branchName=master) |
| Full linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20linux?repoName=microsoft%2Fnni&branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=62&repoName=microsoft%2Fnni&branchName=master) |
| Full windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/full%20test%20-%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=63&branchName=master) |

### Training services

| Type | Status |
| :---: | :---: |
| Remote - linux to linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20linux%20to%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=64&branchName=master) |
| Remote - linux to windows | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20linux%20to%20windows?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=67&branchName=master) |
| Remote - windows to linux | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20remote%20-%20windows%20to%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=68&branchName=master) |
| OpenPAI | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20openpai%20-%20linux?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=65&branchName=master) |
| Frameworkcontroller | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20frameworkcontroller?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=70&branchName=master) |
| Kubeflow | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20kubeflow?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=69&branchName=master) |
272
273
| Hybrid | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20hybrid?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=79&branchName=master) |
| AzureML | [![Build Status](https://msrasrg.visualstudio.com/NNIOpenSource/_apis/build/status/integration%20test%20-%20aml?branchName=master)](https://msrasrg.visualstudio.com/NNIOpenSource/_build/latest?definitionId=78&branchName=master) |
274

275
## Related Projects
Daiki Katsuragawa's avatar
Daiki Katsuragawa committed
276

277
Targeting at openness and advancing state-of-art technology, [Microsoft Research (MSR)](https://www.microsoft.com/en-us/research/group/systems-and-networking-research-group-asia/) had also released few other open source projects.
278
279
280
281
282

* [OpenPAI](https://github.com/Microsoft/pai) : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
* [FrameworkController](https://github.com/Microsoft/frameworkcontroller) : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
* [MMdnn](https://github.com/Microsoft/MMdnn) : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The "MM" in MMdnn stands for model management and "dnn" is an acronym for deep neural network.
* [SPTAG](https://github.com/Microsoft/SPTAG) : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
283
* [nn-Meter](https://github.com/microsoft/nn-Meter) : An accurate inference latency predictor for DNN models on diverse edge devices.
284
285

We encourage researchers and students leverage these projects to accelerate the AI development and research.
Microsoft Open Source's avatar
Microsoft Open Source committed
286

287
## License
Chi Song's avatar
Chi Song committed
288

289
The entire codebase is under [MIT license](LICENSE).