release.rst 75.6 KB
Newer Older
1
2
3
4
.. role:: raw-html(raw)
   :format: html


5
6
Change Log
==========
7

Louis-J's avatar
Louis-J committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Release 2.10 - 11/14/2022
-------------------------

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^

*  Added trial deduplication for evolutionary search.
*  Fixed the racing issue in RL strategy on submitting models.
*  Fixed an issue introduced by the trial recovery feature.
*  Fixed import error of ``PyTorch Lightning`` in NAS.

Compression
^^^^^^^^^^^

*  Supported parsing schema by replacing ``torch._C.parse_schema`` in pytorch 1.8.0 in ModelSpeedup.
*  Fixed the bug that speedup ``rand_like_with_shape`` is easy to overflow when ``dtype=torch.int8``.
*  Fixed the propagation error with view tensors in speedup.

Hyper-parameter optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*  Supported rerunning the interrupted trials induced by the termination of an NNI experiment when resuming this experiment.
*  Fixed a dependency issue of Anneal tuner by changing Anneal tuner dependency to optional.
*  Fixed a bug that tuner might lose connection in long experiments.

Training service
^^^^^^^^^^^^^^^^

*  Fixed a bug that trial code directory cannot have non-English characters.

Web portal
^^^^^^^^^^

*  Fixed an error of columns in HPO experiment hyper-parameters page by using localStorage.
*  Fixed a link error in About menu on WebUI.

Known issues
^^^^^^^^^^^^

*  Modelspeedup does not support non-tensor intermediate variables.

Yuge Zhang's avatar
Yuge Zhang committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
Release 2.9 - 9/8/2022
----------------------

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^

*  New tutorial of model space hub and one-shot strategy.
   (`tutorial <https://nni.readthedocs.io/en/v2.9/tutorials/darts.html>`__)
*  Add pretrained checkpoints to AutoFormer.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/search_space.htm.retiarii.hub.pytorch.AutoformerSpace>`__)
*  Support loading checkpoint of a trained supernet in a subnet.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/strategy.htm.retiarii.strategy.RandomOneShot>`__)
*  Support view and resume of NAS experiment.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/others.htm.retiarii.experiment.pytorch.RetiariiExperiment.resume>`__)

Enhancements
""""""""""""

*  Support ``fit_kwargs`` in lightning evaluator.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/evaluator.html#nni.retiarii.evaluator.pytorch.Lightning>`__)
*  Support ``drop_path`` and ``auxiliary_loss`` in NASNet.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/search_space.html#nasnet>`__)
*  Support gradient clipping in DARTS.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/nas/strategy.html#nni.retiarii.strategy.DARTS>`__)
*  Add ``export_probs`` to monitor the architecture weights.
*  Rewrite configure_optimizers, functions to step optimizers /
   schedulers, along with other hooks for simplicity, and to be
   compatible with latest lightning (v1.7).
*  Align implementation of DifferentiableCell with DARTS official repo.
*  Re-implementation of ProxylessNAS.
*  Move ``nni.retiarii`` code-base to ``nni.nas``.

Bug fixes
"""""""""

*  Fix a performance issue caused by tensor formatting in ``weighted_sum``.
*  Fix a misuse of lambda expression in NAS-Bench-201 search space.
*  Fix the gumbel temperature schedule in Gumbel DARTS.
*  Fix the architecture weight sharing when sharing labels in differentiable strategies.
*  Fix the memo reusing in exporting differentiable cell.

Compression
^^^^^^^^^^^

*  New tutorial of pruning transformer model.
   (`tutorial <https://nni.readthedocs.io/en/v2.9/tutorials/pruning_bert_glue.html>`__)
*  Add ``TorchEvaluator``, ``LightningEvaluator``, ``TransformersEvaluator``
   to ease the expression of training logic in pruner.
   (`doc <https://nni.readthedocs.io/en/v2.9/compression/compression_evaluator.html>`__,
   `API <https://nni.readthedocs.io/en/v2.9/reference/compression/evaluator.html>`__)

Enhancements
""""""""""""

*  Promote all pruner API using ``Evaluator``, the old API is deprecated and will be removed in v3.0.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/compression/pruner.html>`__)
*  Greatly enlarge the set of supported operators in pruning speedup via automatic operator conversion.
*  Support ``lr_scheduler`` in pruning by using ``Evaluator``.
*  Support pruning NLP task in ``ActivationAPoZRankPruner`` and ``ActivationMeanRankPruner``.
*  Add ``training_steps``, ``regular_scale``, ``movement_mode``, ``sparse_granularity`` for ``MovementPruner``.
   (`doc <https://nni.readthedocs.io/en/v2.9/reference/compression/pruner.html#movement-pruner>`__)
*  Add ``GroupNorm`` replacement in pruning speedup. Thanks external contributor
   `@cin-xing <https://github.com/cin-xing>`__.
*  Optimize ``balance`` mode performance in ``LevelPruner``.

Bug fixes
"""""""""

*  Fix the invalid ``dependency_aware`` mode in scheduled pruners.
*  Fix the bug where ``bias`` mask cannot be generated.
*  Fix the bug where ``max_sparsity_per_layer`` has no effect.
*  Fix ``Linear`` and ``LayerNorm`` speedup replacement in NLP task.
*  Fix tracing ``LightningModule`` failed in ``pytorch_lightning >= 1.7.0``.

Hyper-parameter optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

*  Fix the bug that weights are not defined correctly in ``adaptive_parzen_normal`` of TPE.

Training service
^^^^^^^^^^^^^^^^

*  Fix trialConcurrency bug in K8S training service: use``${envId}_run.sh`` to replace ``run.sh``.
*  Fix upload dir bug in K8S training service: use a separate working
   directory for each experiment. Thanks external contributor
   `@amznero <https://github.com/amznero>`__.

Web portal
^^^^^^^^^^

*  Support dict keys in Default metric chart in the detail page.
*  Show experiment error message with small popup windows in the bottom right of the page.
*  Upgrade React router to v6 to fix index router issue.
*  Fix the issue of details page crashing due to choices containing ``None``.
*  Fix the issue of missing dict intermediate dropdown in comparing trials dialog.

Known issues
^^^^^^^^^^^^

*  Activation based pruner can not support ``[batch, seq, hidden]``.
*  Failed trials are NOT auto-submitted when experiment is resumed
   (`[FEAT]: resume waiting/running, dedup on tuner side
   (TPE-only) #4931 <https://github.com/microsoft/nni/pull/4931>`__ is
   reverted due to its pitfalls).

QuanluZhang's avatar
QuanluZhang committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
Release 2.8 - 6/22/2022
-----------------------

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^

* Align user experience of one-shot NAS with multi-trial NAS, i.e., users can use one-shot NAS by specifying the corresponding strategy (`doc <https://nni.readthedocs.io/en/v2.8/nas/exploration_strategy.html#one-shot-strategy>`__)
* Support multi-GPU training of one-shot NAS
* *Preview* Support load/retrain the pre-searched model of some search spaces, i.e., 18 models in 4 different search spaces (`doc <https://github.com/microsoft/nni/tree/v2.8/nni/retiarii/hub>`__)
* Support AutoFormer search space in search space hub, thanks our collaborators @nbl97 and @penghouwen
* One-shot NAS supports the NAS API ``repeat`` and ``cell``
* Refactor of RetiariiExperiment to share the common implementation with HPO experiment
* CGO supports pytorch-lightning 1.6

Model Compression
^^^^^^^^^^^^^^^^^

* *Preview* Refactor and improvement of automatic model compress with a new ``CompressionExperiment``
* Support customizating module replacement function for unsupported modules in model speedup (`doc <https://nni.readthedocs.io/en/v2.8/reference/compression/pruning_speedup.html#nni.compression.pytorch.speedup.ModelSpeedup>`__)
* Support the module replacement function for some user mentioned modules
* Support output_padding for convtranspose2d in model speedup, thanks external contributor @haoshuai-orka

Hyper-Parameter Optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

* Make ``config.tuner.name`` case insensitive
* Allow writing configurations of advisor in tuner format, i.e., aligning the configuration of advisor and tuner

Experiment
^^^^^^^^^^

* Support launching multiple HPO experiments in one process
* Internal refactors and improvements

  * Refactor of the logging mechanism in NNI
  * Refactor of NNI manager globals for flexible and high extensibility
  * Migrate dispatcher IPC to WebSocket
  * Decouple lock stuffs from experiments manager logic
  * Use launcher's sys.executable to detect Python interpreter

WebUI
^^^^^

* Improve user experience of trial ordering in the overview page
* Fix the update issue in the trial detail page

Documentation
^^^^^^^^^^^^^

* A new translation framework for document
* Add a new quantization demo (`doc <https://nni.readthedocs.io/en/v2.8/tutorials/quantization_quick_start_mnist.html>`__)

Notable Bugfixes
^^^^^^^^^^^^^^^^

* Fix TPE import issue for old metrics
* Fix the issue in TPE nested search space
* Support ``RecursiveScriptModule`` in speedup
* Fix the issue of failed "implicit type cast" in merge_parameter()

J-shang's avatar
J-shang committed
214
Release 2.7 - 4/18/2022
J-shang's avatar
J-shang committed
215
216
217
218
-----------------------

Documentation
^^^^^^^^^^^^^
J-shang's avatar
J-shang committed
219

J-shang's avatar
J-shang committed
220
221
222
A full-size upgrade of the documentation, with the following significant improvements in the reading experience, practical tutorials, and examples:

* Reorganized the document structure with a new document template. (`Upgraded doc entry <https://nni.readthedocs.io/en/v2.7>`__)
J-shang's avatar
J-shang committed
223
224
* Add more friendly tutorials with jupyter notebook. (`New Quick Starts <https://nni.readthedocs.io/en/v2.7/quickstart.html>`__)
* New model pruning demo available. (`Youtube entry <https://www.youtube.com/channel/UCKcafm6861B2mnYhPbZHavw>`__, `Bilibili entry <https://space.bilibili.com/1649051673>`__)
J-shang's avatar
J-shang committed
225
226
227

Hyper-Parameter Optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
J-shang's avatar
J-shang committed
228

J-shang's avatar
J-shang committed
229
230
231
232
233
* [Improvement] TPE and random tuners will not generate duplicate hyperparameters anymore.
* [Improvement] Most Python APIs now have type annotations.

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^
J-shang's avatar
J-shang committed
234

J-shang's avatar
J-shang committed
235
236
237
238
239
240
241
242
243
244
245
246
* Jointly search for architecture and hyper-parameters: ValueChoice in evaluator. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/search_space.html#valuechoice>`__)
* Support composition (transformation) of one or several value choices. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/search_space.html#valuechoice>`__)
* Enhanced Cell API (``merge_op``, preprocessor, postprocessor). (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/search_space.html#cell>`__)
* The argument ``depth`` in the ``Repeat`` API allows ValueChoice. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/search_space.html#repeat>`__)
* Support loading ``state_dict`` between sub-net and super-net. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/others.html#nni.retiarii.utils.original_state_dict_hooks>`__, `example in spos <https://nni.readthedocs.io/en/v2.7/reference/nas/strategy.html#spos>`__)
* Support BN fine-tuning and evaluation in SPOS example. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/strategy.html#spos>`__)
* *Experimental* Model hyper-parameter choice. (`doc <https://nni.readthedocs.io/en/v2.7/reference/nas/search_space.html#modelparameterchoice>`__)
* *Preview* Lightning implementation for Retiarii including DARTS, ENAS, ProxylessNAS and RandomNAS. (`example usage <https://github.com/microsoft/nni/blob/v2.7/test/ut/retiarii/test_oneshot.py>`__)
* *Preview* A search space hub that contains 10 search spaces. (`code <https://github.com/microsoft/nni/tree/v2.7/nni/retiarii/hub>`__)

Model Compression
^^^^^^^^^^^^^^^^^
J-shang's avatar
J-shang committed
247

J-shang's avatar
J-shang committed
248
249
250
251
252
253
254
255
* Pruning V2 is promoted as default pruning framework, old pruning is legacy and keeps for a few releases.(`doc <https://nni.readthedocs.io/en/v2.7/reference/compression/pruner.html>`__)
* A new pruning mode ``balance`` is supported in ``LevelPruner``.(`doc <https://nni.readthedocs.io/en/v2.7/reference/compression/pruner.html#level-pruner>`__)
* Support coarse-grained pruning in ``ADMMPruner``.(`doc <https://nni.readthedocs.io/en/v2.7/reference/compression/pruner.html#admm-pruner>`__)
* [Improvement] Support more operation types in pruning speedup.
* [Improvement] Optimize performance of some pruners.

Experiment
^^^^^^^^^^
J-shang's avatar
J-shang committed
256

J-shang's avatar
J-shang committed
257
258
259
260
* [Improvement] Experiment.run() no longer stops web portal on return.

Notable Bugfixes
^^^^^^^^^^^^^^^^
J-shang's avatar
J-shang committed
261

J-shang's avatar
J-shang committed
262
263
264
265
266
267
268
* Fixed: experiment list could not open experiment with prefix.
* Fixed: serializer for complex kinds of arguments.
* Fixed: some typos in code. (thanks @a1trl9 @mrshu)
* Fixed: dependency issue across layer in pruning speedup. 
* Fixed: uncheck trial doesn't work bug in the detail table.
* Fixed: filter name | id bug in the experiment management page.

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
Release 2.6 - 1/19/2022
-----------------------

**NOTE**: NNI v2.6 is the last version that supports Python 3.6. From next release NNI will require Python 3.7+.

Hyper-Parameter Optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Experiment
""""""""""

* The legacy experiment config format is now deprecated. `(doc of new config) <https://nni.readthedocs.io/en/v2.6/reference/experiment_config.html>`__

  * If you are still using legacy format, nnictl will show equivalent new config on start. Please save it to replace the old one.

* nnictl now uses ``nni.experiment.Experiment`` `APIs <https://nni.readthedocs.io/en/stable/Tutorial/HowToLaunchFromPython.html>`__ as backend. The output message of create, resume, and view commands have changed.
* Added Kubeflow and Frameworkcontroller support to hybrid mode.  `(doc) <https://nni.readthedocs.io/en/v2.6/TrainingService/HybridMode.html>`__
* The hidden tuner manifest file has been updated. This should be transparent to users, but if you encounter issues like failed to find tuner, please try to remove ``~/.config/nni``.

Algorithms
""""""""""

* Random tuner now supports classArgs ``seed``. `(doc) <https://nni.readthedocs.io/en/v2.6/Tuner/RandomTuner.html>`__
* TPE tuner is refactored: `(doc) <https://nni.readthedocs.io/en/v2.6/Tuner/TpeTuner.html>`__

  * Support classArgs ``seed``.
  * Support classArgs ``tpe_args`` for expert users to customize algorithm behavior.
  * Parallel optimization has been turned on by default. To turn it off set ``tpe_args.constant_liar_type`` to ``null`` (or ``None`` in Python).
  * ``parallel_optimize`` and ``constant_liar_type`` has been removed. If you are using them please update your config to use ``tpe_args.constant_liar_type`` instead.

* Grid search tuner now supports all search space types, including uniform, normal, and nested choice. `(doc) <https://nni.readthedocs.io/en/v2.6/Tuner/GridsearchTuner.html>`__

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^

* Enhancement to serialization utilities `(doc) <https://nni.readthedocs.io/en/v2.6/NAS/Serialization.html>`__ and changes to recommended practice of customizing evaluators. `(doc) <https://nni.readthedocs.io/en/v2.6/NAS/QuickStart.html#pick-or-customize-a-model-evaluator>`__
* Support latency constraint on edge device for ProxylessNAS based on nn-Meter. `(doc) <https://nni.readthedocs.io/en/v2.6/NAS/Proxylessnas.html>`__
* Trial parameters are showed more friendly in Retiarii experiments.
* Refactor NAS examples of ProxylessNAS and SPOS.

Model Compression
^^^^^^^^^^^^^^^^^

* New Pruner Supported in Pruning V2

  * Auto-Compress Pruner `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/v2_pruning_algo.html#auto-compress-pruner>`__
  * AMC Pruner `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/v2_pruning_algo.html#amc-pruner>`__
  * Movement Pruning Pruner `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/v2_pruning_algo.html#movement-pruner>`__

* Support ``nni.trace`` wrapped ``Optimizer`` in Pruning V2. In the case of not affecting the user experience as much as possible, trace the input parameters of the optimizer. `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/v2_pruning_algo.html>`__
* Optimize Taylor Pruner, APoZ Activation Pruner, Mean Activation Pruner in V2 memory usage.
* Add more examples for Pruning V2.
* Add document for pruning config list.  `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/v2_pruning_config_list.html>`__
* Parameter ``masks_file`` of ``ModelSpeedup`` now accepts `pathlib.Path` object. (Thanks to @dosemeion) `(doc) <https://nni.readthedocs.io/en/v2.6/Compression/ModelSpeedup.html#user-configuration-for-modelspeedup>`__
* Bug Fix

  * Fix Slim Pruner in V2 not sparsify the BN weight.
  * Fix Simulator Annealing Task Generator generates config ignoring 0 sparsity.

Documentation
^^^^^^^^^^^^^

* Supported GitHub feature "Cite this repository".
* Updated index page of readthedocs.
* Updated Chinese documentation.

  * From now on NNI only maintains translation for most import docs and ensures they are up to date.

* Reorganized HPO tuners' doc.

Bugfixes
^^^^^^^^

* Fixed a bug where numpy array is used as a truth value. (Thanks to @khituras)
* Fixed a bug in updating search space.
* Fixed a bug that HPO search space file does not support scientific notation and tab indent.

  * For now NNI does not support mixing scientific notation and YAML features. We are waiting for PyYAML to update.

* Fixed a bug that causes DARTS 2nd order to crash.
* Fixed a bug that causes deep copy of mutation primitives (e.g., LayerChoice) to crash.
* Removed blank at bottom in Web UI overview page.

liuzhe-lz's avatar
liuzhe-lz committed
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
Release 2.5 - 11/2/2021
-----------------------

Model Compression
^^^^^^^^^^^^^^^^^

* New major version of pruning framework `(doc) <https://nni.readthedocs.io/en/v2.5/Compression/v2_pruning.html>`__

  * Iterative pruning is more automated, users can use less code to implement iterative pruning.
  * Support exporting intermediate models in the iterative pruning process.
  * The implementation of the pruning algorithm is closer to the paper.
  * Users can easily customize their own iterative pruning by using ``PruningScheduler``.
  * Optimize the basic pruners underlying generate mask logic, easier to extend new functions.
  * Optimized the memory usage of the pruners.

* MobileNetV2 end-to-end example `(notebook) <https://github.com/microsoft/nni/blob/v2.5/examples/model_compress/pruning/mobilenetv2_end2end/Compressing%20MobileNetV2%20with%20NNI%20Pruners.ipynb>`__
* Improved QAT quantizer `(doc) <https://nni.readthedocs.io/en/v2.5/Compression/Quantizer.html#qat-quantizer>`__

  * support dtype and scheme customization
  * support dp multi-gpu training
  * support load_calibration_config

* Model speed-up now supports directly loading the mask `(doc) <https://nni.readthedocs.io/en/v2.5/Compression/ModelSpeedup.html#nni.compression.pytorch.ModelSpeedup>`__
* Support speed-up depth-wise convolution
* Support bn-folding for LSQ quantizer
* Support QAT and LSQ resume from PTQ
* Added doc for observer quantizer `(doc) <https://nni.readthedocs.io/en/v2.5/Compression/Quantizer.html#observer-quantizer>`__

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^

* NAS benchmark `(doc) <https://nni.readthedocs.io/en/v2.5/NAS/Benchmarks.html>`__

  * Support benchmark table lookup in experiments
  * New data preparation approach

* Improved `quick start doc <https://nni.readthedocs.io/en/v2.5/NAS/QuickStart.html>`__
* Experimental CGO execution engine `(doc) <https://nni.readthedocs.io/en/v2.5/NAS/ExecutionEngines.html#cgo-execution-engine-experimental>`__

Hyper-Parameter Optimization
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

* New training platform: Alibaba DSW+DLC `(doc) <https://nni.readthedocs.io/en/v2.5/TrainingService/DLCMode.html>`__
* Support passing ConfigSpace definition directly to BOHB `(doc) <https://nni.readthedocs.io/en/v2.5/Tuner/BohbAdvisor.html#usage>`__ (thanks to khituras)
* Reformatted `experiment config doc <https://nni.readthedocs.io/en/v2.5/reference/experiment_config.html>`__
* Added example config files for Windows (thanks to @politecat314)
* FrameworkController now supports reuse mode

Fixed Bugs
^^^^^^^^^^

* Experiment cannot start due to platform timestamp format (issue #4077 #4083)
* Cannot use ``1e-5`` in search space (issue #4080)
* Dependency version conflict caused by ConfigSpace (issue #3909) (thanks to @jexxers)
* Hardware-aware SPOS example does not work (issue #4198)
* Web UI show wrong remaining time when duration exceeds limit (issue #4015)
* cudnn.deterministic is always set in AMC pruner (#4117) thanks to @mstczuo

And...
^^^^^^

* New `emoticons <https://github.com/microsoft/nni/blob/v2.5/docs/en_US/Tutorial/NNSpider.md>`__!

.. image:: https://raw.githubusercontent.com/microsoft/nni/v2.5/docs/img/emoicons/Holiday.png

QuanluZhang's avatar
QuanluZhang committed
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
Release 2.4 - 8/11/2021
-----------------------

Major Updates
^^^^^^^^^^^^^

Neural Architecture Search
""""""""""""""""""""""""""

* NAS visualization: visualize model graph through Netron (#3878)
* Support NAS bench 101/201 on Retiarii framework (#3871 #3920)
* Support hypermodule AutoActivation (#3868)
* Support PyTorch v1.8/v1.9 (#3937)
* Support Hardware-aware NAS with nn-Meter (#3938)
* Enable `fixed_arch` on Retiarii (#3972)

Model Compression
"""""""""""""""""

* Refactor of ModelSpeedup: auto shape/mask inference (#3462)
* Added more examples for ModelSpeedup (#3880)
* Support global sort for Taylor pruning (#3896)
* Support TransformerHeadPruner (#3884)
* Support batch normalization folding in QAT quantizer (#3911, thanks the external contributor @chenbohua3)
* Support post-training observer quantizer (#3915, thanks the external contributor @chenbohua3)
* Support ModelSpeedup for Slim Pruner (#4008)
* Support TensorRT 8.0.0 in ModelSpeedup (#3866)

Hyper-parameter Tuning
""""""""""""""""""""""

* Improve HPO benchmarks (#3925)
* Improve type validation of user defined search space (#3975)

Training service & nnictl
"""""""""""""""""""""""""

* Support JupyterLab (#3668 #3954)
* Support viewing experiment from experiment folder (#3870)
* Support kubeflow in training service reuse framework (#3919)
* Support viewing trial log on WebUI for an experiment launched in `view` mode (#3872)

Minor Updates & Bug Fixes
"""""""""""""""""""""""""

* Fix the failure of the exit of Retiarii experiment (#3899)
* Fix `exclude` not supported in some `config_list` cases (#3815)
* Fix bug in remote training service on reuse mode (#3941)
* Improve IP address detection in modern way (#3860)
* Fix bug of the search box on WebUI (#3935)
* Fix bug in url_prefix of WebUI (#4051)
* Support dict format of intermediate on WebUI (#3895)
* Fix bug in openpai training service induced by experiment config v2 (#4027 #4057)
* Improved doc (#3861 #3885 #3966 #4004 #3955)
* Improved the API `export_model` in model compression (#3968)
* Supported `UnSqueeze` in ModelSpeedup (#3960)
* Thanks other external contributors: @Markus92 (#3936), @thomasschmied (#3963), @twmht (#3842)


476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
Release 2.3 - 6/15/2021
-----------------------

Major Updates
^^^^^^^^^^^^^

Neural Architecture Search
""""""""""""""""""""""""""

* Retiarii Framework (NNI NAS 2.0) Beta Release with new features:

  * Support new high-level APIs: ``Repeat`` and ``Cell`` (#3481)
  * Support pure-python execution engine (#3605)
  * Support policy-based RL strategy (#3650)
  * Support nested ModuleList (#3652)
  * Improve documentation (#3785)

  **Note**: there are more exciting features of Retiarii planned in the future releases, please refer to `Retiarii Roadmap <https://github.com/microsoft/nni/discussions/3744>`__  for more information.

* Add new NAS algorithm: Blockwise DNAS FBNet (#3532, thanks the external contributor @alibaba-yiwuyao) 

Model Compression
"""""""""""""""""

* Support Auto Compression Framework (#3631)
* Support slim pruner in Tensorflow (#3614)
* Support LSQ quantizer (#3503, thanks the external contributor @chenbohua3)
* Improve APIs for iterative pruners (#3507 #3688)

Training service & Rest
"""""""""""""""""""""""

* Support 3rd-party training service (#3662 #3726)
* Support setting prefix URL (#3625 #3674 #3672 #3643)
* Improve NNI manager logging (#3624)
* Remove outdated TensorBoard code on nnictl (#3613)

Hyper-Parameter Optimization
""""""""""""""""""""""""""""

* Add new tuner: DNGO (#3479 #3707)
* Add benchmark for tuners (#3644 #3720 #3689)

WebUI
"""""

* Improve search parameters on trial detail page (#3651 #3723 #3715)
* Make selected trials consistent after auto-refresh in detail table (#3597)
* Add trial stdout button on local mode (#3653 #3690)

Examples & Documentation
""""""""""""""""""""""""

* Convert all trial examples' from config v1 to config v2 (#3721 #3733 #3711 #3600)
* Add new jupyter notebook examples (#3599 #3700)

Dev Excellent
"""""""""""""

* Upgrade dependencies in Dockerfile (#3713 #3722)
* Substitute PyYAML for ``ruamel.yaml`` (#3702)
* Add pipelines for AML and hybrid training service and experiment config V2 (#3477 #3648)
* Add pipeline badge in README (#3589)
* Update issue bug report template (#3501)


Bug Fixes & Minor Updates
^^^^^^^^^^^^^^^^^^^^^^^^^

* Fix syntax error on Windows (#3634)
* Fix a logging related bug (#3705)
* Fix a bug in GPU indices (#3721)
* Fix a bug in FrameworkController (#3730)
* Fix a bug in ``export_data_url format`` (#3665)
* Report version check failure as a warning (#3654)
* Fix bugs and lints in nnictl (#3712)
* Fix bug of ``optimize_mode`` on WebUI (#3731)
* Fix bug of ``useActiveGpu`` in AML v2 config (#3655)
* Fix bug of ``experiment_working_directory`` in Retiarii config (#3607)
* Fix a bug in mask conflict (#3629, thanks the external contributor @Davidxswang) 
* Fix a bug in model speedup shape inference (#3588, thanks the external contributor @Davidxswang)
* Fix a bug in multithread on Windows (#3604, thanks the external contributor @Ivanfangsc)
* Delete redundant code in training service (#3526, thanks the external contributor @maxsuren)
* Fix typo in DoReFa compression doc (#3693, thanks the external contributor @Erfandarzi)
* Update docstring in model compression (#3647, thanks the external contributor @ichejun)
* Fix a bug when using Kubernetes container (#3719, thanks the external contributor @rmfan)


SparkSnail's avatar
SparkSnail committed
564
Release 2.2 - 4/26/2021
kvartet's avatar
kvartet committed
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
-----------------------

Major updates
^^^^^^^^^^^^^

Neural Architecture Search
""""""""""""""""""""""""""

* Improve NAS 2.0 (Retiarii) Framework (Alpha Release)

  * Support local debug mode (#3476)
  * Support nesting ``ValueChoice`` in ``LayerChoice`` (#3508)
  * Support dict/list type in ``ValueChoice`` (#3508)
  * Improve the format of export architectures (#3464)
  * Refactor of NAS examples (#3513)
  * Refer to `here <https://github.com/microsoft/nni/issues/3301>`__ for Retiarii Roadmap

Model Compression
"""""""""""""""""

* Support speedup for mixed precision quantization model (Experimental) (#3488 #3512)
* Support model export for quantization algorithm (#3458 #3473)
* Support model export in model compression for TensorFlow (#3487)
* Improve documentation (#3482)

nnictl & nni.experiment
"""""""""""""""""""""""

* Add native support for experiment config V2 (#3466 #3540 #3552)
* Add resume and view mode in Python API ``nni.experiment`` (#3490 #3524 #3545)

Training Service
""""""""""""""""

* Support umount for shared storage in remote training service (#3456)
* Support Windows as the remote training service in reuse mode (#3500)
* Remove duplicated env folder in remote training service (#3472)
* Add log information for GPU metric collector (#3506)
SparkSnail's avatar
SparkSnail committed
603
* Enable optional Pod Spec for FrameworkController platform (#3379, thanks the external contributor @mbu93)
kvartet's avatar
kvartet committed
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

WebUI
"""""

* Support launching TensorBoard on WebUI (#3454 #3361 #3531)
* Upgrade echarts-for-react to v5 (#3457)
* Add wrap for dispatcher/nnimanager log monaco editor (#3461)

Bug Fixes
^^^^^^^^^

* Fix bug of FLOPs counter (#3497)
* Fix bug of hyper-parameter Add/Remove axes and table Add/Remove columns button conflict (#3491)
* Fix bug that monaco editor search text is not displayed completely (#3492)
* Fix bug of Cream NAS (#3498, thanks the external contributor @AliCloud-PAI)
* Fix typos in docs (#3448, thanks the external contributor @OliverShang)
* Fix typo in NAS 1.0 (#3538, thanks the external contributor @ankitaggarwal23)


kvartet's avatar
kvartet committed
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
Release 2.1 - 3/10/2021
-----------------------

Major updates
^^^^^^^^^^^^^

Neural architecture search
""""""""""""""""""""""""""

* Improve NAS 2.0 (Retiarii) Framework (Improved Experimental)

  * Improve the robustness of graph generation and code generation for PyTorch models (#3365)
  * Support the inline mutation API ``ValueChoice`` (#3349 #3382)
  * Improve the design and implementation of Model Evaluator (#3359 #3404)
  * Support Random/Grid/Evolution exploration strategies (i.e., search algorithms) (#3377)
  * Refer to `here <https://github.com/microsoft/nni/issues/3301>`__ for Retiarii Roadmap

Training service
""""""""""""""""

* Support shared storage for reuse mode (#3354)
* Support Windows as the local training service in hybrid mode (#3353)
* Remove PAIYarn training service (#3327)
* Add "recently-idle" scheduling algorithm (#3375)
* Deprecate ``preCommand`` and enable ``pythonPath`` for remote training service (#3284 #3410)
* Refactor reuse mode temp folder (#3374)

nnictl & nni.experiment
"""""""""""""""""""""""

* Migrate ``nnicli`` to new Python API ``nni.experiment`` (#3334)
* Refactor the way of specifying tuner in experiment Python API (\ ``nni.experiment``\ ), more aligned with ``nnictl`` (#3419)

WebUI
"""""

* Support showing the assigned training service of each trial in hybrid mode on WebUI (#3261 #3391)
* Support multiple selection for filter status in experiments management page (#3351)
* Improve overview page (#3316 #3317 #3352)
* Support copy trial id in the table (#3378)

Documentation
^^^^^^^^^^^^^

* Improve model compression examples and documentation (#3326 #3371)
* Add Python API examples and documentation (#3396)
* Add SECURITY doc (#3358)
* Add 'What's NEW!' section in README (#3395) 
* Update English contributing doc (#3398, thanks external contributor @Yongxuanzhang)

Bug fixes
^^^^^^^^^

* Fix AML outputs path and python process not killed (#3321)
* Fix bug that an experiment launched from Python cannot be resumed by nnictl (#3309)
* Fix import path of network morphism example (#3333)
* Fix bug in the tuple unpack (#3340)
* Fix bug of security for arbitrary code execution (#3311, thanks external contributor @huntr-helper)
* Fix ``NoneType`` error on jupyter notebook (#3337, thanks external contributor @tczhangzhi)
* Fix bugs in Retiarii (#3339 #3341 #3357, thanks external contributor @tczhangzhi)
* Fix bug in AdaptDL mode example (#3381, thanks external contributor @ZeyaWang)
* Fix the spelling mistake of assessor (#3416, thanks external contributor @ByronCHAO)
* Fix bug in ruamel import (#3430, thanks external contributor @rushtehrani)


688
689
Release 2.0 - 1/14/2021
-----------------------
kvartet's avatar
kvartet committed
690
691

Major updates
692
^^^^^^^^^^^^^
kvartet's avatar
kvartet committed
693
694

Neural architecture search
695
""""""""""""""""""""""""""
kvartet's avatar
kvartet committed
696
697
698
699
700
701
702
703
704
705
706

* Support an improved NAS framework: Retiarii (experimental)

  * Feature roadmap (`issue #3301 <https://github.com/microsoft/nni/issues/3301>`__)
  * `Related issues and pull requests <https://github.com/microsoft/nni/issues?q=label%3Aretiarii-v2.0>`__
  * Documentation (#3221 #3282 #3287)

* Support a new NAS algorithm: Cream (#2705)
* Add a new NAS benchmark for NLP model search (#3140)

Training service
707
""""""""""""""""
kvartet's avatar
kvartet committed
708
709
710
711
712
713

* Support hybrid training service (#3097 #3251 #3252)
* Support AdlTrainingService, a new training service based on Kubernetes (#3022, thanks external contributors Petuum @pw2393)


Model compression
714
"""""""""""""""""
kvartet's avatar
kvartet committed
715
716
717
718
719
720
721

* Support pruning schedule for fpgm pruning algorithm (#3110)
* ModelSpeedup improvement: support torch v1.7 (updated graph_utils.py) (#3076)
* Improve model compression utility: model flops counter (#3048 #3265)


WebUI & nnictl 
722
""""""""""""""
kvartet's avatar
kvartet committed
723
724
725
726
727
728
729

* Support experiments management on WebUI, add a web page for it (#3081 #3127)
* Improve the layout of overview page (#3046 #3123)
* Add navigation bar on the right for logs and configs; add expanded icons for table (#3069 #3103)


Others
730
""""""
kvartet's avatar
kvartet committed
731
732
733
734
735
736
737
738
739
740

* Support launching an experiment from Python code (#3111 #3210 #3263)
* Refactor builtin/customized tuner installation (#3134)
* Support new experiment configuration V2 (#3138 #3248 #3251)
* Reorganize source code directory hierarchy (#2962 #2987 #3037)
* Change SIGKILL to SIGTERM in local mode when cancelling trial jobs (#3173)
* Refector hyperband (#3040)


Documentation
741
^^^^^^^^^^^^^
kvartet's avatar
kvartet committed
742
743
744
745
746
747
748
749

* Port markdown docs to reStructuredText docs and introduce ``githublink`` (#3107)
* List related research and publications in doc (#3150)
* Add tutorial of saving and loading quantized model (#3192)
* Remove paiYarn doc and add description of ``reuse`` config in remote mode (#3253)
* Update EfficientNet doc to clarify repo versions (#3158, thanks external contributor @ahundt)

Bug fixes
750
^^^^^^^^^
kvartet's avatar
kvartet committed
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

* Fix exp-duration pause timing under NO_MORE_TRIAL status (#3043)
* Fix bug in NAS SPOS trainer, apply_fixed_architecture (#3051, thanks external contributor @HeekangPark)
* Fix ``_compute_hessian`` bug in NAS DARTS (PyTorch version) (#3058, thanks external contributor @hroken)
* Fix bug of conv1d in the cdarts utils (#3073, thanks external contributor @athaker)
* Fix the handling of unknown trials when resuming an experiment (#3096)
* Fix bug of kill command under Windows (#3106)
* Fix lazy logging (#3108, thanks external contributor @HarshCasper)
* Fix checkpoint load and save issue in QAT quantizer (#3124, thanks external contributor @eedalong)
* Fix quant grad function calculation error (#3160, thanks external contributor @eedalong)
* Fix device assignment bug in quantization algorithm (#3212, thanks external contributor @eedalong)
* Fix bug in ModelSpeedup and enhance UT for it (#3279)
* and others (#3063 #3065 #3098 #3109 #3125 #3143 #3156 #3168 #3175 #3180 #3181 #3183 #3203 #3205 #3207 #3214 #3216 #3219 #3223 #3224 #3230 #3237 #3239 #3240 #3245 #3247 #3255 #3257 #3258 #3262 #3263 #3267 #3269 #3271 #3279 #3283 #3289 #3290 #3295)


766
Release 1.9 - 10/22/2020
767
------------------------
768
769

Major updates
770
^^^^^^^^^^^^^
771
772

Neural architecture search
773
""""""""""""""""""""""""""
774
775
776
777
778
779


* Support regularized evolution algorithm for NAS scenario (#2802)
* Add NASBench201 in search space zoo (#2766)

Model compression
780
"""""""""""""""""
781
782
783
784
785
786
787
788
789


* AMC pruner improvement: support resnet, support reproduction of the experiments (default parameters in our example code) in AMC paper (#2876 #2906)
* Support constraint-aware on some of our pruners to improve model compression efficiency (#2657)
* Support "tf.keras.Sequential" in model compression for TensorFlow (#2887)
* Support customized op in the model flops counter (#2795)
* Support quantizing bias in QAT quantizer (#2914)

Training service
790
""""""""""""""""
791
792
793
794
795
796
797


* Support configuring python environment using "preCommand" in remote mode (#2875)
* Support AML training service in Windows (#2882)
* Support reuse mode for remote training service (#2923)

WebUI & nnictl
798
""""""""""""""
799
800
801
802
803
804
805
806
807


* The "Overview" page on WebUI is redesigned with new layout (#2914)
* Upgraded node, yarn and FabricUI, and enabled Eslint (#2894 #2873 #2744)
* Add/Remove columns in hyper-parameter chart and trials table in "Trials detail" page (#2900)
* JSON format utility beautify on WebUI (#2863)
* Support nnictl command auto-completion (#2857)

UT & IT
808
^^^^^^^
809
810
811
812
813
814
815


* Add integration test for experiment import and export (#2878)
* Add integration test for user installed builtin tuner (#2859)
* Add unit test for nnictl (#2912)

Documentation
816
^^^^^^^^^^^^^
817
818
819
820
821


* Refactor of the document for model compression (#2919)

Bug fixes
822
^^^^^^^^^
823
824
825
826
827
828
829
830
831
832


* Bug fix of naïve evolution tuner, correctly deal with trial fails (#2695)
* Resolve the warning "WARNING (nni.protocol) IPC pipeline not exists, maybe you are importing tuner/assessor from trial code?" (#2864)
* Fix search space issue in experiment save/load (#2886)
* Fix bug in experiment import data (#2878)
* Fix annotation in remote mode (python 3.8 ast update issue) (#2881)
* Support boolean type for "choice" hyper-parameter when customizing trial configuration on WebUI (#3003)

Release 1.8 - 8/27/2020
833
-----------------------
834
835

Major updates
836
^^^^^^^^^^^^^
837
838

Training service
839
""""""""""""""""
840
841
842
843
844
845
846
847
848
849


* Access trial log directly on WebUI (local mode only) (#2718)
* Add OpenPAI trial job detail link (#2703)
* Support GPU scheduler in reusable environment (#2627) (#2769)
* Add timeout for ``web_channel`` in ``trial_runner`` (#2710)
* Show environment error message in AzureML mode (#2724)
* Add more log information when copying data in OpenPAI mode (#2702)

WebUI, nnictl and nnicli
850
""""""""""""""""""""""""
851
852
853
854
855
856
857
858


* Improve hyper-parameter parallel coordinates plot (#2691) (#2759)
* Add pagination for trial job list (#2738) (#2773)
* Enable panel close when clicking overlay region (#2734)
* Remove support for Multiphase on WebUI (#2760)
* Support save and restore experiments (#2750)
* Add intermediate results in export result (#2706)
859
860
* Add `command <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Tutorial/Nnictl.md#nnictl-trial>`__ to list trial results with highest/lowest metrics (#2747)
* Improve the user experience of `nnicli <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/nnicli_ref.md>`__ with `examples <https://github.com/microsoft/nni/blob/v1.8/examples/notebooks/retrieve_nni_info_with_python.ipynb>`__ (#2713)
861
862

Neural architecture search
863
""""""""""""""""""""""""""
864
865


866
* `Search space zoo: ENAS and DARTS <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/NAS/SearchSpaceZoo.md>`__ (#2589)
867
868
869
* API to query intermediate results in NAS benchmark (#2728)

Model compression
870
"""""""""""""""""
871
872
873
874
875


* Support the List/Tuple Construct/Unpack operation for TorchModuleGraph (#2609)
* Model speedup improvement: Add support of DenseNet and InceptionV3 (#2719)
* Support the multiple successive tuple unpack operations (#2768)
876
877
* `Doc of comparing the performance of supported pruners <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/CommunitySharings/ModelCompressionComparison.md>`__ (#2742)
* New pruners: `Sensitivity pruner <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Compressor/Pruner.md#sensitivity-pruner>`__ (#2684) and `AMC pruner <https://github.com/microsoft/nni/blob/v1.8/docs/en_US/Compressor/Pruner.md>`__ (#2573) (#2786)
878
879
880
* TensorFlow v2 support in model compression (#2755)

Backward incompatible changes
881
"""""""""""""""""""""""""""""
882
883
884
885
886
887


* Update the default experiment folder from ``$HOME/nni/experiments`` to ``$HOME/nni-experiments``. If you want to view the experiments created by previous NNI releases, you can move the experiments folders from  ``$HOME/nni/experiments`` to ``$HOME/nni-experiments`` manually. (#2686) (#2753)
* Dropped support for Python 3.5 and scikit-learn 0.20 (#2778) (#2777) (2783) (#2787) (#2788) (#2790)

Others
888
""""""
889
890
891
892
893


* Upgrade TensorFlow version in Docker image (#2732) (#2735) (#2720)

Examples
894
^^^^^^^^
895
896
897
898
899


* Remove gpuNum in assessor examples (#2641)

Documentation
900
^^^^^^^^^^^^^
901
902
903
904
905
906


* Improve customized tuner documentation (#2628)
* Fix several typos and grammar mistakes in documentation (#2637 #2638, thanks @tomzx)
* Improve AzureML training service documentation (#2631)
* Improve CI of Chinese translation (#2654)
kvartet's avatar
kvartet committed
907
* Improve OpenPAI training service documentation (#2685)
908
909
910
911
912
* Improve documentation of community sharing (#2640)
* Add tutorial of Colab support (#2700)
* Improve documentation structure for model compression (#2676)

Bug fixes
913
^^^^^^^^^
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928


* Fix mkdir error in training service (#2673)
* Fix bug when using chmod in remote training service (#2689)
* Fix dependency issue by making ``_graph_utils`` imported inline (#2675)
* Fix mask issue in ``SimulatedAnnealingPruner`` (#2736)
* Fix intermediate graph zooming issue (#2738)
* Fix issue when dict is unordered when querying NAS benchmark (#2728)
* Fix import issue for gradient selector dataloader iterator (#2690)
* Fix support of adding tens of machines in remote training service (#2725)
* Fix several styling issues in WebUI (#2762 #2737)
* Fix support of unusual types in metrics including NaN and Infinity (#2782)
* Fix nnictl experiment delete (#2791)

Release 1.7 - 7/8/2020
929
----------------------
930
931

Major Features
932
^^^^^^^^^^^^^^
933
934

Training Service
935
""""""""""""""""
936
937
938


* Support AML(Azure Machine Learning) platform as NNI training service.
939
940
* OpenPAI job can be reusable. When a trial is completed, the OpenPAI job won't stop, and wait next trial. `refer to reuse flag in OpenPAI config <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/PaiMode.md#openpai-configurations>`__.
* `Support ignoring files and folders in code directory with .nniignore when uploading code directory to training service <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/Overview.md#how-to-use-training-service>`__.
941
942

Neural Architecture Search (NAS)
943
""""""""""""""""""""""""""""""""
944
945
946


* 
947
  `Provide NAS Open Benchmarks (NasBench101, NasBench201, NDS) with friendly APIs <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/Benchmarks.md>`__.
948
949

* 
950
  `Support Classic NAS (i.e., non-weight-sharing mode) on TensorFlow 2.X <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/ClassicNas.md>`__.
951
952

Model Compression
953
"""""""""""""""""
954
955
956


* Improve Model Speedup: track more dependencies among layers and automatically resolve mask conflict, support the speedup of pruned resnet.
957
958
* Added new pruners, including three auto model pruning algorithms: `NetAdapt Pruner <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#netadapt-pruner>`__\ , `SimulatedAnnealing Pruner <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#simulatedannealing-pruner>`__\ , `AutoCompress Pruner <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#autocompress-pruner>`__\ , and `ADMM Pruner <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Pruner.md#admm-pruner>`__.
* Added `model sensitivity analysis tool <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/CompressionUtils.md>`__ to help users find the sensitivity of each layer to the pruning.
959
* 
960
  `Easy flops calculation for model compression and NAS <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/CompressionUtils.md#model-flops-parameters-counter>`__.
961
962
963
964
965

* 
  Update lottery ticket pruner to export winning ticket.

Examples
966
""""""""
967
968


969
* Automatically optimize tensor operators on NNI with a new `customized tuner OpEvo <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrialExample/OpEvoExamples.md>`__.
970
971

Built-in tuners/assessors/advisors
972
""""""""""""""""""""""""""""""""""
973
974


975
* `Allow customized tuners/assessor/advisors to be installed as built-in algorithms <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Tutorial/InstallCustomizedAlgos.md>`__.
976
977

WebUI
978
"""""
979
980
981
982
983
984
985


* Support visualizing nested search space more friendly.
* Show trial's dict keys in hyper-parameter graph.
* Enhancements to trial duration display.

Others
986
""""""
987
988
989
990
991
992


* Provide utility function to merge parameters received from NNI
* Support setting paiStorageConfigName in pai mode

Documentation
993
^^^^^^^^^^^^^
994
995


996
997
* Improve `documentation for model compression <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/Compressor/Overview.md>`__
* Improve `documentation <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/Benchmarks.md>`__
998
  and `examples <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/NAS/BenchmarksExample.ipynb>`__ for NAS benchmarks.
999
* Improve `documentation for AzureML training service <https://github.com/microsoft/nni/blob/v1.7/docs/en_US/TrainingService/AMLMode.md>`__
1000
1001
1002
* Homepage migration to readthedoc.

Bug Fixes
1003
^^^^^^^^^
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047


* Fix bug for model graph with shared nn.Module
* Fix nodejs OOM when ``make build``
* Fix NASUI bugs
* Fix duration and intermediate results pictures update issue.
* Fix minor WebUI table style issues.

Release 1.6 - 5/26/2020
-----------------------

Major Features
^^^^^^^^^^^^^^

New Features and improvement
^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Improve IPC limitation to 100W
* improve code storage upload logic among trials in non-local platform
* support ``__version__`` for SDK version
* support windows dev intall

Web UI
^^^^^^


* Show trial error message
* finalize homepage layout
* Refactor overview's best trials module
* Remove multiphase from webui
* add tooltip for trial concurrency in the overview page
* Show top trials for hyper-parameter graph

HPO Updates
^^^^^^^^^^^


* Improve PBT on failure handling and support experiment resume for PBT

NAS Updates
^^^^^^^^^^^


1048
* NAS support for TensorFlow 2.0 (preview) `TF2.0 NAS examples <https://github.com/microsoft/nni/tree/v1.6/examples/nas/naive-tf>`__
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
* Use OrderedDict for LayerChoice
* Prettify the format of export
* Replace layer choice with selected module after applied fixed architecture

Model Compression Updates
^^^^^^^^^^^^^^^^^^^^^^^^^


* Model compression PyTorch 1.4 support

Training Service Updates
^^^^^^^^^^^^^^^^^^^^^^^^


* update pai yaml merge logic
1064
* support windows as remote machine in remote mode `Remote Mode <https://github.com/microsoft/nni/blob/v1.6/docs/en_US/TrainingService/RemoteMachineMode.md#windows>`__
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

Bug Fix
^^^^^^^


* fix dev install
* SPOS example crash when the checkpoints do not have state_dict
* Fix table sort issue when experiment had failed trial
* Support multi python env (conda, pyenv etc)

Release 1.5 - 4/13/2020
-----------------------

New Features and Documentation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Hyper-Parameter Optimizing
^^^^^^^^^^^^^^^^^^^^^^^^^^


1085
* New tuner: `Population Based Training (PBT) <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/Tuner/PBTTuner.md>`__
1086
1087
1088
1089
1090
1091
* Trials can now report infinity and NaN as result

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^


1092
1093
* New NAS algorithm: `TextNAS <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/NAS/TextNAS.md>`__
* ENAS and DARTS now support `visualization <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/NAS/Visualization.md>`__ through web UI.
1094
1095
1096
1097
1098

Model Compression
^^^^^^^^^^^^^^^^^


1099
* New Pruner: `GradientRankFilterPruner <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/Compression/Pruner.md#gradientrankfilterpruner>`__
1100
1101
1102
* Compressors will validate configuration by default
* Refactor: Adding optimizer as an input argument of pruner, for easy support of DataParallel and more efficient iterative pruning. This is a broken change for the usage of iterative pruning algorithms.
* Model compression examples are refactored and improved
1103
* Added documentation for `implementing compressing algorithm <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/Compression/Framework.md>`__
1104
1105
1106
1107
1108
1109

Training Service
^^^^^^^^^^^^^^^^


* Kubeflow now supports pytorchjob crd v1 (thanks external contributor @jiapinai)
1110
* Experimental `DLTS <https://github.com/microsoft/nni/blob/v1.5/docs/en_US/TrainingService/DLTSMode.md>`__ support
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140

Overall Documentation Improvement
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Documentation is significantly improved on grammar, spelling, and wording (thanks external contributor @AHartNtkn)

Fixed Bugs
^^^^^^^^^^


* ENAS cannot have more than one LSTM layers (thanks external contributor @marsggbo)
* NNI manager's timers will never unsubscribe (thanks external contributor @guilhermehn)
* NNI manager may exhaust head memory (thanks external contributor @Sundrops)
* Batch tuner does not support customized trials (#2075)
* Experiment cannot be killed if it failed on start (#2080)
* Non-number type metrics break web UI (#2278)
* A bug in lottery ticket pruner
* Other minor glitches

Release 1.4 - 2/19/2020
-----------------------

Major Features
^^^^^^^^^^^^^^

Neural Architecture Search
^^^^^^^^^^^^^^^^^^^^^^^^^^


1141
1142
* Support `C-DARTS <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/CDARTS.md>`__ algorithm and add `the example <https://github.com/microsoft/nni/tree/v1.4/examples/nas/cdarts>`__ using it
* Support a preliminary version of `ProxylessNAS <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/Proxylessnas.md>`__ and the corresponding `example <https://github.com/microsoft/nni/tree/v1.4/examples/nas/proxylessnas>`__
1143
1144
1145
1146
1147
1148
1149
* Add unit tests for the NAS framework

Model Compression
^^^^^^^^^^^^^^^^^


* Support DataParallel for compressing models, and provide `an example <https://github.com/microsoft/nni/blob/v1.4/examples/model_compress/multi_gpu.py>`__ of using DataParallel
1150
* Support `model speedup <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Compressor/ModelSpeedup.md>`__ for compressed models, in Alpha version
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

Training Service
^^^^^^^^^^^^^^^^


* Support complete PAI configurations by allowing users to specify PAI config file path
* Add example config yaml files for the new PAI mode (i.e., paiK8S)
* Support deleting experiments using sshkey in remote mode (thanks external contributor @tyusr)

WebUI
^^^^^


* WebUI refactor: adopt fabric framework

Others
^^^^^^


1170
* Support running `NNI experiment at foreground <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Tutorial/Nnictl.md#manage-an-experiment>`__\ , i.e., ``--foreground`` argument in ``nnictl create/resume/view``
1171
1172
1173
1174
1175
1176
1177
1178
* Support canceling the trials in UNKNOWN state
* Support large search space whose size could be up to 50mb (thanks external contributor @Sundrops)

Documentation
^^^^^^^^^^^^^


* Improve `the index structure <https://nni.readthedocs.io/en/latest/>`__ of NNI readthedocs
1179
1180
1181
1182
* Improve `documentation for NAS <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/NasGuide.md>`__
* Improve documentation for `the new PAI mode <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/TrainingService/PaiMode.md>`__
* Add QuickStart guidance for `NAS <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/QuickStart.md>`__ and `model compression <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Compressor/QuickStart.md>`__
* Improve documentation for `the supported EfficientNet <https://github.com/microsoft/nni/blob/v1.4/docs/en_US/TrialExample/EfficientNet.md>`__
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

Bug Fixes
^^^^^^^^^


* Correctly support NaN in metric data, JSON compliant
* Fix the out-of-range bug of ``randint`` type in search space
* Fix the bug of wrong tensor device when exporting onnx model in model compression
* Fix incorrect handling of nnimanagerIP in the new PAI mode (i.e., paiK8S)

Release 1.3 - 12/30/2019
------------------------

Major Features
^^^^^^^^^^^^^^

Neural Architecture Search Algorithms Support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* `Single Path One Shot <https://github.com/microsoft/nni/tree/v1.3/examples/nas/spos/>`__ algorithm and the example using it

Model Compression Algorithms Support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


1209
* `Knowledge Distillation <https://github.com/microsoft/nni/blob/v1.3/docs/en_US/TrialExample/KDExample.md>`__ algorithm and the example using itExample
1210
1211
* Pruners

1212
1213
1214
1215
1216
1217
1218
1219
  * `L2Filter Pruner <https://github.com/microsoft/nni/blob/v1.3/docs/en_US/Compressor/Pruner.md#3-l2filter-pruner>`__
  * `ActivationAPoZRankFilterPruner <https://github.com/microsoft/nni/blob/v1.3/docs/en_US/Compressor/Pruner.md#1-activationapozrankfilterpruner>`__
  * `ActivationMeanRankFilterPruner <https://github.com/microsoft/nni/blob/v1.3/docs/en_US/Compressor/Pruner.md#2-activationmeanrankfilterpruner>`__

* `BNN Quantizer <https://github.com/microsoft/nni/blob/v1.3/docs/en_US/Compressor/Quantizer.md#bnn-quantizer>`__

Training Service
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253

* 
  NFS Support for PAI

    Instead of using HDFS as default storage, since OpenPAI v0.11, OpenPAI can have NFS or AzureBlob or other storage as default storage. In this release, NNI extended the support for this recent change made by OpenPAI, and could integrate with OpenPAI v0.11 or later version with various default storage.

* 
  Kubeflow update adoption

    Adopted the Kubeflow 0.7's new supports for tf-operator.

Engineering (code and build automation)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Enforced `ESLint <https://eslint.org/>`__ on static code analysis.

Small changes & Bug Fixes
^^^^^^^^^^^^^^^^^^^^^^^^^


* correctly recognize builtin tuner and customized tuner
* logging in dispatcher base
* fix the bug where tuner/assessor's failure sometimes kills the experiment.
* Fix local system as remote machine `issue <https://github.com/microsoft/nni/issues/1852>`__
* de-duplicate trial configuration in smac tuner `ticket <https://github.com/microsoft/nni/issues/1364>`__

Release 1.2 - 12/02/2019
------------------------

Major Features
^^^^^^^^^^^^^^


1254
* `Feature Engineering <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/FeatureEngineering/Overview.md>`__
1255
1256

  * New feature engineering interface
1257
  * Feature selection algorithms: `Gradient feature selector <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/FeatureEngineering/GradientFeatureSelector.md>`__ & `GBDT selector <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/FeatureEngineering/GBDTSelector.md>`__
1258
1259
1260
1261
  * `Examples for feature engineering <https://github.com/microsoft/nni/tree/v1.2/examples/feature_engineering>`__

* Neural Architecture Search (NAS) on NNI

1262
1263
  * `New NAS interface <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/NAS/NasInterface.md>`__
  * NAS algorithms: `ENAS <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/NAS/Overview.md#enas>`__\ , `DARTS <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/NAS/Overview.md#darts>`__\ , `P-DARTS <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/NAS/Overview.md#p-darts>`__ (in PyTorch)
1264
1265
1266
1267
  * NAS in classic mode (each trial runs independently)

* Model compression

1268
1269
  * `New model pruning algorithms <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/Compressor/Overview.md>`__\ : lottery ticket pruning approach, L1Filter pruner, Slim pruner, FPGM pruner
  * `New model quantization algorithms <https://github.com/microsoft/nni/blob/v1.2/docs/en_US/Compressor/Overview.md>`__\ : QAT quantizer, DoReFa quantizer
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
  * Support the API for exporting compressed model.

* Training Service

  * Support OpenPAI token authentication

* Examples:

  * `An example to automatically tune rocksdb configuration with NNI <https://github.com/microsoft/nni/tree/v1.2/examples/trials/systems/rocksdb-fillrandom>`__.
  * `A new MNIST trial example supports tensorflow 2.0 <https://github.com/microsoft/nni/tree/v1.2/examples/trials/mnist-tfv2>`__.

* Engineering Improvements

  * For remote training service,  trial jobs require no GPU are now scheduled with round-robin policy instead of random.
  * Pylint rules added to check pull requests, new pull requests need to comply with these `pylint rules <https://github.com/microsoft/nni/blob/v1.2/pylintrc>`__.

* Web Portal & User Experience

  * Support user to add customized trial.
  * User can zoom out/in in detail graphs, except Hyper-parameter.

* Documentation

  * Improved NNI API documentation with more API docstring.

Bug fix
^^^^^^^


* Fix the table sort issue when failed trials haven't metrics. -Issue #1773
* Maintain selected status(Maximal/Minimal) when the page switched. -PR#1710
* Make hyper-parameters graph's default metric yAxis more accurate. -PR#1736
* Fix GPU script permission issue. -Issue #1665

Release 1.1 - 10/23/2019
------------------------

Major Features
^^^^^^^^^^^^^^


1311
1312
1313
* New tuner: `PPO Tuner <https://github.com/microsoft/nni/blob/v1.1/docs/en_US/Tuner/PPOTuner.md>`__
* `View stopped experiments <https://github.com/microsoft/nni/blob/v1.1/docs/en_US/Tutorial/Nnictl.md#view>`__
* Tuners can now use dedicated GPU resource (see ``gpuIndices`` in `tutorial <https://github.com/microsoft/nni/blob/v1.1/docs/en_US/Tutorial/ExperimentConfig.md>`__ for details)
1314
1315
1316
1317
1318
1319
1320
1321
* Web UI improvements

  * Trials detail page can now list hyperparameters of each trial, as well as their start and end time (via "add column")
  * Viewing huge experiment is now less laggy

* More examples

  * `EfficientNet PyTorch example <https://github.com/ultmaster/EfficientNet-PyTorch>`__
1322
  * `Cifar10 NAS example <https://github.com/microsoft/nni/blob/v1.1/examples/trials/nas_cifar10/README.md>`__
1323

1324
* `Model compression toolkit - Alpha release <https://github.com/microsoft/nni/blob/v1.1/docs/en_US/Compressor/Overview.md>`__\ : We are glad to announce the alpha release for model compression toolkit on top of NNI, it's still in the experiment phase which might evolve based on usage feedback. We'd like to invite you to use, feedback and even contribute
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347

Fixed Bugs
^^^^^^^^^^


* Multiphase job hangs when search space exhuasted (issue #1204)
* ``nnictl`` fails when log not available (issue #1548)

Release 1.0 - 9/2/2019
----------------------

Major Features
^^^^^^^^^^^^^^


* 
  Tuners and Assessors


  * Support Auto-Feature generator & selection    -Issue#877  -PR #1387

    * Provide auto feature interface
    * Tuner based on beam search
1348
    * `Add Pakdd example <https://github.com/microsoft/nni/tree/v1.0/examples/trials/auto-feature-engineering>`__
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

  * Add a parallel algorithm to improve the performance of TPE with large concurrency.  -PR #1052
  * Support multiphase for hyperband    -PR #1257

* 
  Training Service


  * Support private docker registry   -PR #755


  * Engineering Improvements

    * Python wrapper for rest api, support retrieve the values of the metrics in a programmatic way  PR #1318
    * New python API : get_experiment_id(), get_trial_id()  -PR #1353   -Issue #1331 & -Issue#1368
    * Optimized NAS Searchspace  -PR #1393

      * Unify NAS search space with _type -- "mutable_type"e
      * Update random search tuner

    * Set gpuNum as optional      -Issue #1365
    * Remove outputDir and dataDir configuration in PAI mode   -Issue #1342
    * When creating a trial in Kubeflow mode, codeDir will no longer be copied to logDir   -Issue #1224

* 
  Web Portal & User Experience


  * Show the best metric curve during search progress in WebUI  -Issue #1218
  * Show the current number of parameters list in multiphase experiment   -Issue1210  -PR #1348
  * Add "Intermediate count" option in AddColumn.      -Issue #1210
  * Support search parameters value in WebUI     -Issue #1208
  * Enable automatic scaling of axes for metric value  in default metric graph   -Issue #1360
  * Add a detailed documentation link to the nnictl command in the command prompt    -Issue #1260
  * UX improvement for showing Error log   -Issue #1173

* 
  Documentation


  * Update the docs structure  -Issue #1231
  * (deprecated) Multi phase document improvement   -Issue #1233  -PR #1242

    * Add configuration example

  * `WebUI description improvement <Tutorial/WebUI.rst>`__  -PR #1419

Bug fix
^^^^^^^


* (Bug fix)Fix the broken links in 0.9 release  -Issue #1236
* (Bug fix)Script for auto-complete
* (Bug fix)Fix pipeline issue that it only check exit code of last command in a script.  -PR #1417
* (Bug fix)quniform fors tuners    -Issue #1377
* (Bug fix)'quniform' has different meaning beween GridSearch and other tuner.   -Issue #1335
* (Bug fix)"nnictl experiment list" give the status of a "RUNNING" experiment as "INITIALIZED" -PR #1388
* (Bug fix)SMAC cannot be installed if nni is installed in dev mode    -Issue #1376
* (Bug fix)The filter button of the intermediate result cannot be clicked   -Issue #1263
* (Bug fix)API "/api/v1/nni/trial-jobs/xxx" doesn't show a trial's all parameters in multiphase experiment    -Issue #1258
* (Bug fix)Succeeded trial doesn't have final result but webui show ×××(FINAL)  -Issue #1207
* (Bug fix)IT for nnictl stop -Issue #1298
* (Bug fix)fix security warning
* (Bug fix)Hyper-parameter page broken  -Issue #1332
* (Bug fix)Run flake8 tests to find Python syntax errors and undefined names -PR #1217

Release 0.9 - 7/1/2019
----------------------

Major Features
^^^^^^^^^^^^^^


* General NAS programming interface

  * Add ``enas-mode``  and ``oneshot-mode`` for NAS interface: `PR #1201 <https://github.com/microsoft/nni/pull/1201#issue-291094510>`__

* 
  `Gaussian Process Tuner with Matern kernel <Tuner/GPTuner.rst>`__

* 
  (deprecated) Multiphase experiment supports


  * Added new training service support for multiphase experiment: PAI mode supports multiphase experiment since v0.9.
  * Added multiphase capability for the following builtin tuners:

    * TPE, Random Search, Anneal, Naïve Evolution, SMAC, Network Morphism, Metis Tuner.

* 
  Web Portal


  * Enable trial comparation in Web Portal. For details, refer to `View trials status <Tutorial/WebUI.rst>`__
  * Allow users to adjust rendering interval of Web Portal. For details, refer to `View Summary Page <Tutorial/WebUI.rst>`__
  * show intermediate results more friendly. For details, refer to `View trials status <Tutorial/WebUI.rst>`__

* `Commandline Interface <Tutorial/Nnictl.rst>`__

  * ``nnictl experiment delete``\ : delete one or all experiments, it includes log, result, environment information and cache. It uses to delete useless experiment result, or save disk space.
  * ``nnictl platform clean``\ : It uses to clean up disk on a target platform. The provided YAML file includes the information of target platform, and it follows the same schema as the NNI configuration file.
1450
1451
1452

Bug fix and other changes
^^^^^^^^^^^^^^^^^^^^^^^^^^
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

* Tuner Installation Improvements: add `sklearn <https://scikit-learn.org/stable/>`__ to nni dependencies.
* (Bug Fix) Failed to connect to PAI http code - `Issue #1076 <https://github.com/microsoft/nni/issues/1076>`__
* (Bug Fix) Validate file name for PAI platform - `Issue #1164 <https://github.com/microsoft/nni/issues/1164>`__
* (Bug Fix) Update GMM evaluation in Metis Tuner
* (Bug Fix) Negative time number rendering in Web Portal - `Issue #1182 <https://github.com/microsoft/nni/issues/1182>`__\ , `Issue #1185 <https://github.com/microsoft/nni/issues/1185>`__
* (Bug Fix) Hyper-parameter not shown correctly in WebUI when there is only one hyper parameter - `Issue #1192 <https://github.com/microsoft/nni/issues/1192>`__

Release 0.8 - 6/4/2019
----------------------

Major Features
^^^^^^^^^^^^^^


* Support NNI on Windows for OpenPAI/Remote mode

  * NNI running on windows for remote mode
  * NNI running on windows for OpenPAI mode

* Advanced features for using GPU

  * Run multiple trial jobs on the same GPU for local and remote mode
  * Run trial jobs on the GPU running non-NNI jobs

* Kubeflow v1beta2 operator

  * Support Kubeflow TFJob/PyTorchJob v1beta2

1482
* `General NAS programming interface <https://github.com/microsoft/nni/blob/v0.8/docs/en_US/GeneralNasInterfaces.md>`__
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620

  * Provide NAS programming interface for users to easily express their neural architecture search space through NNI annotation
  * Provide a new command ``nnictl trial codegen`` for debugging the NAS code
  * Tutorial of NAS programming interface, example of NAS on MNIST, customized random tuner for NAS

* Support resume tuner/advisor's state for experiment resume
* For experiment resume, tuner/advisor will be resumed by replaying finished trial data
* Web Portal

  * Improve the design of copying trial's parameters
  * Support 'randint' type in hyper-parameter graph
  * Use should ComponentUpdate to avoid unnecessary render

Bug fix and other changes
^^^^^^^^^^^^^^^^^^^^^^^^^


* Bug fix that ``nnictl update`` has inconsistent command styles
* Support import data for SMAC tuner
* Bug fix that experiment state transition from ERROR back to RUNNING
* Fix bug of table entries
* Nested search space refinement
* Refine 'randint' type and support lower bound
* `Comparison of different hyper-parameter tuning algorithm <CommunitySharings/HpoComparison.rst>`__
* `Comparison of NAS algorithm <CommunitySharings/NasComparison.rst>`__
* `NNI practice on Recommenders <CommunitySharings/RecommendersSvd.rst>`__

Release 0.7 - 4/29/2018
-----------------------

Major Features
^^^^^^^^^^^^^^


* `Support NNI on Windows <Tutorial/InstallationWin.rst>`__

  * NNI running on windows for local mode

* `New advisor: BOHB <Tuner/BohbAdvisor.rst>`__

  * Support a new advisor BOHB, which is a robust and efficient hyperparameter tuning algorithm, combines the advantages of Bayesian optimization and Hyperband

* `Support import and export experiment data through nnictl <Tutorial/Nnictl.rst>`__

  * Generate analysis results report after the experiment execution
  * Support import data to tuner and advisor for tuning

* `Designated gpu devices for NNI trial jobs <Tutorial/ExperimentConfig.rst#localConfig>`__

  * Specify GPU devices for NNI trial jobs by gpuIndices configuration, if gpuIndices is set in experiment configuration file, only the specified GPU devices are used for NNI trial jobs.

* Web Portal enhancement

  * Decimal format of metrics other than default on the Web UI
  * Hints in WebUI about Multi-phase
  * Enable copy/paste for hyperparameters as python dict
  * Enable early stopped trials data for tuners.

* NNICTL provide better error message

  * nnictl provide more meaningful error message for YAML file format error

Bug fix
^^^^^^^


* Unable to kill all python threads after nnictl stop in async dispatcher mode
* nnictl --version does not work with make dev-install
* All trail jobs status stays on 'waiting' for long time on OpenPAI platform

Release 0.6 - 4/2/2019
----------------------

Major Features
^^^^^^^^^^^^^^


* `Version checking <TrainingService/PaiMode.rst>`__

  * check whether the version is consistent between nniManager and trialKeeper

* `Report final metrics for early stop job <https://github.com/microsoft/nni/issues/776>`__

  * If includeIntermediateResults is true, the last intermediate result of the trial that is early stopped by assessor is sent to tuner as final result. The default value of includeIntermediateResults is false.

* `Separate Tuner/Assessor <https://github.com/microsoft/nni/issues/841>`__

  * Adds two pipes to separate message receiving channels for tuner and assessor.

* Make log collection feature configurable
* Add intermediate result graph for all trials

Bug fix
^^^^^^^


* `Add shmMB config key for OpenPAI <https://github.com/microsoft/nni/issues/842>`__
* Fix the bug that doesn't show any result if metrics is dict
* Fix the number calculation issue for float types in hyperband
* Fix a bug in the search space conversion in SMAC tuner
* Fix the WebUI issue when parsing experiment.json with illegal format
* Fix cold start issue in Metis Tuner

Release 0.5.2 - 3/4/2019
------------------------

Improvements
^^^^^^^^^^^^


* Curve fitting assessor performance improvement.

Documentation
^^^^^^^^^^^^^


* Chinese version document: https://nni.readthedocs.io/zh/latest/
* Debuggability/serviceability document: https://nni.readthedocs.io/en/latest/Tutorial/HowToDebug.html
* Tuner assessor reference: https://nni.readthedocs.io/en/latest/sdk_reference.html

Bug Fixes and Other Changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Fix a race condition bug that does not store trial job cancel status correctly.
* Fix search space parsing error when using SMAC tuner.
* Fix cifar10 example broken pipe issue.
* Add unit test cases for nnimanager and local training service.
* Add integration test azure pipelines for remote machine, OpenPAI and kubeflow training services.
* Support Pylon in OpenPAI webhdfs client.

Release 0.5.1 - 1/31/2018
-------------------------

Improvements
^^^^^^^^^^^^


1621
1622
* Making `log directory <https://github.com/microsoft/nni/blob/v0.5.1/docs/ExperimentConfig.md>`__ configurable
* Support `different levels of logs <https://github.com/microsoft/nni/blob/v0.5.1/docs/ExperimentConfig.md>`__\ , making it easier for debugging
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650

Documentation
^^^^^^^^^^^^^


* Reorganized documentation & New Homepage Released: https://nni.readthedocs.io/en/latest/

Bug Fixes and Other Changes
^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Fix the bug of installation in python virtualenv, and refactor the installation logic
* Fix the bug of HDFS access failure on OpenPAI mode after OpenPAI is upgraded.
* Fix the bug that sometimes in-place flushed stdout makes experiment crash

Release 0.5.0 - 01/14/2019
--------------------------

Major Features
^^^^^^^^^^^^^^

New tuner and assessor supports
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Support `Metis tuner <Tuner/MetisTuner.rst>`__ as a new NNI tuner. Metis algorithm has been proofed to be well performed for **online** hyper-parameter tuning.
* Support `ENAS customized tuner <https://github.com/countif/enas_nni>`__\ , a tuner contributed by github community user, is an algorithm for neural network search, it could learn neural network architecture via reinforcement learning and serve a better performance than NAS.
* Support `Curve fitting assessor <Assessor/CurvefittingAssessor.rst>`__ for early stop policy using learning curve extrapolation.
1651
* Advanced Support of `Weight Sharing <https://github.com/microsoft/nni/blob/v0.5/docs/AdvancedNAS.md>`__\ : Enable weight sharing for NAS tuners, currently through NFS.
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Training Service Enhancement
^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* `FrameworkController Training service <TrainingService/FrameworkControllerMode.rst>`__\ : Support run experiments using frameworkcontroller on kubernetes

  * FrameworkController is a Controller on kubernetes that is general enough to run (distributed) jobs with various machine learning frameworks, such as tensorflow, pytorch, MXNet.
  * NNI provides unified and simple specification for job definition.
  * MNIST example for how to use FrameworkController.

User Experience improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* A better trial logging support for NNI experiments in OpenPAI, Kubeflow and FrameworkController mode:

  * An improved logging architecture to send stdout/stderr of trials to NNI manager via Http post. NNI manager will store trial's stdout/stderr messages in local log file.
  * Show the link for trial log file on WebUI.

* Support to show final result's all key-value pairs.

Release 0.4.1 - 12/14/2018
--------------------------

Major Features
^^^^^^^^^^^^^^

New tuner supports
^^^^^^^^^^^^^^^^^^


* Support `network morphism <Tuner/NetworkmorphismTuner.rst>`__ as a new tuner

Training Service improvements
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* Migrate `Kubeflow training service <TrainingService/KubeflowMode.rst>`__\ 's dependency from kubectl CLI to `Kubernetes API <https://kubernetes.io/docs/concepts/overview/kubernetes-api/>`__ client
* `Pytorch-operator <https://github.com/kubeflow/pytorch-operator>`__ support for Kubeflow training service
* Improvement on local code files uploading to OpenPAI HDFS
* Fixed OpenPAI integration WebUI bug: WebUI doesn't show latest trial job status, which is caused by OpenPAI token expiration

NNICTL improvements
^^^^^^^^^^^^^^^^^^^


* Show version information both in nnictl and WebUI. You can run **nnictl -v** to show your current installed NNI version

WebUI improvements
^^^^^^^^^^^^^^^^^^


* Enable modify concurrency number during experiment
* Add feedback link to NNI github 'create issue' page
* Enable customize top 10 trials regarding to metric numbers (largest or smallest)
* Enable download logs for dispatcher & nnimanager
* Enable automatic scaling of axes for metric number
* Update annotation to support displaying real choice in searchspace

New examples
^^^^^^^^^^^^


1716
1717
* `FashionMnist <https://github.com/microsoft/nni/tree/v0.5/examples/trials/network_morphism>`__\ , work together with network morphism tuner
* `Distributed MNIST example <https://github.com/microsoft/nni/tree/v0.5/examples/trials/mnist-distributed-pytorch>`__ written in PyTorch
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728

Release 0.4 - 12/6/2018
-----------------------

Major Features
^^^^^^^^^^^^^^


* `Kubeflow Training service <TrainingService/KubeflowMode.rst>`__

  * Support tf-operator
1729
  * `Distributed trial example <https://github.com/microsoft/nni/tree/v0.4/examples/trials/mnist-distributed/dist_mnist.py>`__ on Kubeflow
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769

* `Grid search tuner <Tuner/GridsearchTuner.rst>`__
* `Hyperband tuner <Tuner/HyperbandAdvisor.rst>`__
* Support launch NNI experiment on MAC
* WebUI

  * UI support for hyperband tuner
  * Remove tensorboard button
  * Show experiment error message
  * Show line numbers in search space and trial profile
  * Support search a specific trial by trial number
  * Show trial's hdfsLogPath
  * Download experiment parameters

Others
^^^^^^


* Asynchronous dispatcher
* Docker file update, add pytorch library
* Refactor 'nnictl stop' process, send SIGTERM to nni manager process, rather than calling stop Rest API.
* OpenPAI training service bug fix

  * Support NNI Manager IP configuration(nniManagerIp) in OpenPAI cluster config file, to fix the issue that user’s machine has no eth0 device
  * File number in codeDir is capped to 1000 now, to avoid user mistakenly fill root dir for codeDir
  * Don’t print useless ‘metrics is empty’ log in OpenPAI job’s stdout. Only print useful message once new metrics are recorded, to reduce confusion when user checks OpenPAI trial’s output for debugging purpose
  * Add timestamp at the beginning of each log entry in trial keeper.

Release 0.3.0 - 11/2/2018
-------------------------

NNICTL new features and updates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* 
  Support running multiple experiments simultaneously.

  Before v0.3, NNI only supports running single experiment once a time. After this release, users are able to run multiple experiments simultaneously. Each experiment will require a unique port, the 1st experiment will be set to the default port as previous versions. You can specify a unique port for the rest experiments as below:

Yuge Zhang's avatar
Yuge Zhang committed
1770
  .. code-block:: text
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820

     nnictl create --port 8081 --config <config file path>

* 
  Support updating max trial number.
  use ``nnictl update --help`` to learn more. Or refer to `NNICTL Spec <Tutorial/Nnictl.rst>`__ for the fully usage of NNICTL.

API new features and updates
^^^^^^^^^^^^^^^^^^^^^^^^^^^^


* 
  :raw-html:`<span style="color:red">**breaking change**</span>`\ : nn.get_parameters() is refactored to nni.get_next_parameter. All examples of prior releases can not run on v0.3, please clone nni repo to get new examples. If you had applied NNI to your own codes, please update the API accordingly.

* 
  New API **nni.get_sequence_id()**.
  Each trial job is allocated a unique sequence number, which can be retrieved by nni.get_sequence_id() API.

  .. code-block:: bash

     git clone -b v0.3 https://github.com/microsoft/nni.git

* 
  **nni.report_final_result(result)** API supports more data types for result parameter.

  It can be of following types:


  * int
  * float
  * A python dict containing 'default' key, the value of 'default' key should be of type int or float. The dict can contain any other key value pairs.

New tuner support
^^^^^^^^^^^^^^^^^


* **Batch Tuner** which iterates all parameter combination, can be used to submit batch trial jobs.

New examples
^^^^^^^^^^^^


* 
  A NNI Docker image for public usage:

  .. code-block:: bash

     docker pull msranni/nni:latest

* 
1821
  New trial example: `NNI Sklearn Example <https://github.com/microsoft/nni/tree/v0.3/examples/trials/sklearn>`__
1822

1823
* New competition example: `Kaggle Competition TGS Salt Example <https://github.com/microsoft/nni/tree/v0.3/examples/trials/kaggle-tgs-salt>`__
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

Others
^^^^^^


* UI refactoring, refer to `WebUI doc <Tutorial/WebUI.rst>`__ for how to work with the new UI.
* Continuous Integration: NNI had switched to Azure pipelines

Release 0.2.0 - 9/29/2018
-------------------------

Major Features
^^^^^^^^^^^^^^


* Support `OpenPAI <https://github.com/microsoft/pai>`__ Training Platform (See `here <TrainingService/PaiMode.rst>`__ for instructions about how to submit NNI job in pai mode)

  * Support training services on pai mode. NNI trials will be scheduled to run on OpenPAI cluster
  * NNI trial's output (including logs and model file) will be copied to OpenPAI HDFS for further debugging and checking

* Support `SMAC <https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf>`__ tuner (See `here <Tuner/SmacTuner.rst>`__ for instructions about how to use SMAC tuner)

  * `SMAC <https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf>`__ is based on Sequential Model-Based Optimization (SMBO). It adapts the most prominent previously used model class (Gaussian stochastic process models) and introduces the model class of random forests to SMBO to handle categorical parameters. The SMAC supported by NNI is a wrapper on `SMAC3 <https://github.com/automl/SMAC3>`__

* Support NNI installation on `conda <https://conda.io/docs/index.html>`__ and python virtual environment
* Others

  * Update ga squad example and related documentation
  * WebUI UX small enhancement and bug fix

Release 0.1.0 - 9/10/2018 (initial release)
-------------------------------------------

Initial release of Neural Network Intelligence (NNI).

Major Features
^^^^^^^^^^^^^^


* Installation and Deployment

  * Support pip install and source codes install
  * Support training services on local mode(including Multi-GPU mode) as well as multi-machines mode

* Tuners, Assessors and Trial

  * Support AutoML algorithms including:  hyperopt_tpe, hyperopt_annealing, hyperopt_random, and evolution_tuner
  * Support assessor(early stop) algorithms including: medianstop algorithm
  * Provide Python API for user defined tuners and assessors
  * Provide Python API for user to wrap trial code as NNI deployable codes

* Experiments

  * Provide a command line toolkit 'nnictl' for experiments management
  * Provide a WebUI for viewing experiments details and managing experiments

* Continuous Integration

  * Support CI by providing out-of-box integration with `travis-ci <https://github.com/travis-ci>`__ on ubuntu

* Others

  * Support simple GPU job scheduling