test_model_speedup.py 3.97 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.vgg import vgg16
from torchvision.models.resnet import resnet18
from unittest import TestCase, main

chicm-ms's avatar
chicm-ms committed
13
from nni.compression.torch import L1FilterPruner, apply_compression_results
chicm-ms's avatar
chicm-ms committed
14
15
from nni.compression.speedup.torch import ModelSpeedup

chicm-ms's avatar
chicm-ms committed
16
17
torch.manual_seed(0)

chicm-ms's avatar
chicm-ms committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class BackboneModel1(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 1, 1, 1)
    def forward(self, x):
        return self.conv1(x)

class BackboneModel2(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5, 1)
        self.conv2 = nn.Conv2d(20, 50, 5, 1)
        self.bn1 = nn.BatchNorm2d(self.conv1.out_channels)
        self.bn2 = nn.BatchNorm2d(self.conv2.out_channels)
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.bn2(self.conv2(x)))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(x.size(0), -1)
        
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return x

class BigModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.backbone1 = BackboneModel1()
        self.backbone2 = BackboneModel2()
        self.fc3 =  nn.Sequential(
            nn.Linear(10, 10),
            nn.BatchNorm1d(10),
            nn.ReLU(inplace=True),
            nn.Linear(10, 2)
        )
    def forward(self, x):
        x = self.backbone1(x)
        x = self.backbone2(x)
        x = self.fc3(x)
        return x

chicm-ms's avatar
chicm-ms committed
63
dummy_input = torch.randn(2, 1, 28, 28)
chicm-ms's avatar
chicm-ms committed
64
SPARSITY = 0.5
chicm-ms's avatar
chicm-ms committed
65
66
MODEL_FILE, MASK_FILE = './11_model.pth', './l1_mask.pth'

chicm-ms's avatar
chicm-ms committed
67
68
69
70
71
72
73
def prune_model_l1(model):
    config_list = [{
        'sparsity': SPARSITY,
        'op_types': ['Conv2d']
    }]
    pruner = L1FilterPruner(model, config_list)
    pruner.compress()
chicm-ms's avatar
chicm-ms committed
74
    pruner.export_model(model_path=MODEL_FILE, mask_path=MASK_FILE)
chicm-ms's avatar
chicm-ms committed
75
76
77
78
79
80

class SpeedupTestCase(TestCase):
    def test_speedup_vgg16(self):
        prune_model_l1(vgg16())
        model = vgg16()
        model.train()
chicm-ms's avatar
chicm-ms committed
81
        ms = ModelSpeedup(model, torch.randn(2, 3, 32, 32), MASK_FILE)
chicm-ms's avatar
chicm-ms committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        ms.speedup_model()

        orig_model = vgg16()
        assert model.training
        assert model.features[2].out_channels == int(orig_model.features[2].out_channels * SPARSITY)
        assert model.classifier[0].in_features == int(orig_model.classifier[0].in_features * SPARSITY)

    #def test_speedup_resnet(self):
        #TODO support resnet
        #model = resnet18()

    def test_speedup_bigmodel(self):
        prune_model_l1(BigModel())
        model = BigModel()
chicm-ms's avatar
chicm-ms committed
96
97
98
99
        apply_compression_results(model, MASK_FILE, 'cpu')
        model.eval()
        mask_out = model(dummy_input)

chicm-ms's avatar
chicm-ms committed
100
        model.train()
chicm-ms's avatar
chicm-ms committed
101
        ms = ModelSpeedup(model, dummy_input, MASK_FILE)
chicm-ms's avatar
chicm-ms committed
102
        ms.speedup_model()
chicm-ms's avatar
chicm-ms committed
103
104
105
106
107
108
109
110
111
        assert model.training

        model.eval()
        speedup_out = model(dummy_input)
        if not torch.allclose(mask_out, speedup_out, atol=1e-07):
            print('input:', dummy_input.size(), torch.abs(dummy_input).sum((2,3)))
            print('mask_out:', mask_out)
            print('speedup_out:', speedup_out)
            raise RuntimeError('model speedup inference result is incorrect!')
chicm-ms's avatar
chicm-ms committed
112
113

        orig_model = BigModel()
chicm-ms's avatar
chicm-ms committed
114

chicm-ms's avatar
chicm-ms committed
115
116
117
118
119
120
        assert model.backbone2.conv1.out_channels == int(orig_model.backbone2.conv1.out_channels * SPARSITY)
        assert model.backbone2.conv2.in_channels == int(orig_model.backbone2.conv2.in_channels * SPARSITY)
        assert model.backbone2.conv2.out_channels == int(orig_model.backbone2.conv2.out_channels * SPARSITY)
        assert model.backbone2.fc1.in_features == int(orig_model.backbone2.fc1.in_features * SPARSITY)

    def tearDown(self):
chicm-ms's avatar
chicm-ms committed
121
122
        os.remove(MODEL_FILE)
        os.remove(MASK_FILE)
chicm-ms's avatar
chicm-ms committed
123
124
125

if __name__ == '__main__':
    main()