"test/vscode:/vscode.git/clone" did not exist on "73687a660f363c75d3938fe24f0c9033dce2846f"
utils.py 1.63 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging

import torch
import torch.nn as nn

INF = 1E10
EPS = 1E-12

logger = logging.getLogger("nni.textnas")


def get_length(mask):
    length = torch.sum(mask, 1)
Yuge Zhang's avatar
Yuge Zhang committed
17
    length = length.long().cpu()
Yuge Zhang's avatar
Yuge Zhang committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
    return length


class GlobalAvgPool(nn.Module):
    def forward(self, x, mask):
        x = torch.sum(x, 2)
        length = torch.sum(mask, 1, keepdim=True).float()
        length += torch.eq(length, 0.0).float() * EPS
        length = length.repeat(1, x.size()[1])
        x /= length
        return x


class GlobalMaxPool(nn.Module):
    def forward(self, x, mask):
        mask = torch.eq(mask.float(), 0.0).long()
        mask = torch.unsqueeze(mask, dim=1).repeat(1, x.size()[1], 1)
        mask *= -INF
        x += mask
        x, _ = torch.max(x + mask, 2)
        return x


class IteratorWrapper:
    def __init__(self, loader):
        self.loader = loader
        self.iterator = None

    def __iter__(self):
        self.iterator = iter(self.loader)
        return self

    def __len__(self):
        return len(self.loader)

    def __next__(self):
        data = next(self.iterator)
        text, length = data.text
        max_length = text.size(1)
        label = data.label - 1
        bs = label.size(0)
        mask = torch.arange(max_length, device=length.device).unsqueeze(0).repeat(bs, 1)
        mask = mask < length.unsqueeze(-1).repeat(1, max_length)
        return (text, mask), label


def accuracy(output, target):
    batch_size = target.size(0)
    _, predicted = torch.max(output.data, 1)
    return (predicted == target).sum().item() / batch_size