enas_micro_example.py 4.57 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import logging
import torch.nn as nn
import torch.nn.functional as F

from argparse import ArgumentParser
from torchvision import transforms
from torchvision.datasets import CIFAR10

Yuge Zhang's avatar
Yuge Zhang committed
10
from nni.algorithms.nas.pytorch import enas
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
from utils import accuracy, reward_accuracy
from nni.nas.pytorch.callbacks import (ArchitectureCheckpoint,
                                       LRSchedulerCallback)

from nni.nas.pytorch.search_space_zoo import ENASMicroLayer

logger = logging.getLogger('nni')


def get_dataset(cls):
    MEAN = [0.49139968, 0.48215827, 0.44653124]
    STD = [0.24703233, 0.24348505, 0.26158768]
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize(MEAN, STD)
    ]

    train_transform = transforms.Compose(transf + normalize)
    valid_transform = transforms.Compose(normalize)

    if cls == "cifar10":
        dataset_train = CIFAR10(root="./data", train=True, download=True, transform=train_transform)
        dataset_valid = CIFAR10(root="./data", train=False, download=True, transform=valid_transform)
    else:
        raise NotImplementedError
    return dataset_train, dataset_valid


class MicroNetwork(nn.Module):
    def __init__(self, num_layers=2, num_nodes=5, out_channels=24, in_channels=3, num_classes=10,
                 dropout_rate=0.0):
        super().__init__()
        self.num_layers = num_layers

        self.stem = nn.Sequential(
            nn.Conv2d(in_channels, out_channels * 3, 3, 1, 1, bias=False),
            nn.BatchNorm2d(out_channels * 3)
        )

        pool_distance = self.num_layers // 3
        pool_layers = [pool_distance, 2 * pool_distance + 1]
        self.dropout = nn.Dropout(dropout_rate)

        self.layers = nn.ModuleList()
        c_pp = c_p = out_channels * 3
        c_cur = out_channels
        for layer_id in range(self.num_layers + 2):
            reduction = False
            if layer_id in pool_layers:
                c_cur, reduction = c_p * 2, True
65
            self.layers.append(ENASMicroLayer(num_nodes, c_pp, c_p, c_cur, reduction))
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
            if reduction:
                c_pp = c_p = c_cur
            c_pp, c_p = c_p, c_cur

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.dense = nn.Linear(c_cur, num_classes)

        self.reset_parameters()

    def reset_parameters(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)

    def forward(self, x):
        bs = x.size(0)
        prev = cur = self.stem(x)
        # aux_logits = None

        for layer in self.layers:
            prev, cur = layer(prev, cur)

        cur = self.gap(F.relu(cur)).view(bs, -1)
        cur = self.dropout(cur)
        logits = self.dense(cur)

        # if aux_logits is not None:
        #     return logits, aux_logits
        return logits


if __name__ == "__main__":
    parser = ArgumentParser("enas")
    parser.add_argument("--batch-size", default=128, type=int)
    parser.add_argument("--log-frequency", default=10, type=int)
    parser.add_argument("--epochs", default=None, type=int, help="Number of epochs (default: macro 310, micro 150)")
    parser.add_argument("--visualization", default=False, action="store_true")
    args = parser.parse_args()

    dataset_train, dataset_valid = get_dataset("cifar10")

    model = MicroNetwork(num_layers=6, out_channels=20, num_nodes=5, dropout_rate=0.1)
    num_epochs = args.epochs or 150
    mutator = enas.EnasMutator(model, tanh_constant=1.1, cell_exit_extra_step=True)

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)

    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=accuracy,
                               reward_function=reward_accuracy,
                               optimizer=optimizer,
                               callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")],
                               batch_size=args.batch_size,
                               num_epochs=num_epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
                               log_frequency=args.log_frequency,
                               mutator=mutator)
    if args.visualization:
        trainer.enable_visualization()
    trainer.train()