enas_macro_example.py 3.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import torch
import logging
import torch.nn as nn
import torch.nn.functional as F

from argparse import ArgumentParser
from torchvision import transforms
from torchvision.datasets import CIFAR10

from nni.nas.pytorch import mutables
Yuge Zhang's avatar
Yuge Zhang committed
11
from nni.algorithms.nas.pytorch import enas
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from utils import accuracy, reward_accuracy
from nni.nas.pytorch.callbacks import (ArchitectureCheckpoint,
                                       LRSchedulerCallback)
from nni.nas.pytorch.search_space_zoo import ENASMacroLayer
from nni.nas.pytorch.search_space_zoo import ENASMacroGeneralModel

logger = logging.getLogger('nni')


def get_dataset(cls):
    MEAN = [0.49139968, 0.48215827, 0.44653124]
    STD = [0.24703233, 0.24348505, 0.26158768]
    transf = [
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip()
    ]
    normalize = [
        transforms.ToTensor(),
        transforms.Normalize(MEAN, STD)
    ]

    train_transform = transforms.Compose(transf + normalize)
    valid_transform = transforms.Compose(normalize)

    if cls == "cifar10":
        dataset_train = CIFAR10(root="./data", train=True, download=True, transform=train_transform)
        dataset_valid = CIFAR10(root="./data", train=False, download=True, transform=valid_transform)
    else:
        raise NotImplementedError
    return dataset_train, dataset_valid


class FactorizedReduce(nn.Module):
    def __init__(self, C_in, C_out, affine=False):
        super().__init__()
        self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(C_out, affine=affine)

    def forward(self, x):
        out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1)
        out = self.bn(out)
        return out


if __name__ == "__main__":
    parser = ArgumentParser("enas")
    parser.add_argument("--batch-size", default=128, type=int)
    parser.add_argument("--log-frequency", default=10, type=int)
    parser.add_argument("--epochs", default=None, type=int, help="Number of epochs (default: macro 310, micro 150)")
    parser.add_argument("--visualization", default=False, action="store_true")
    args = parser.parse_args()

    dataset_train, dataset_valid = get_dataset("cifar10")
    model = ENASMacroGeneralModel()
    num_epochs = args.epochs or 310
    mutator = None

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=num_epochs, eta_min=0.001)
    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=accuracy,
                               reward_function=reward_accuracy,
                               optimizer=optimizer,
                               callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")],
                               batch_size=args.batch_size,
                               num_epochs=num_epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
                               log_frequency=args.log_frequency,
                               mutator=mutator)
    if args.visualization:
        trainer.enable_visualization()
    trainer.train()