"vscode:/vscode.git/clone" did not exist on "a9dd42f74f541649b577c212f9caeea1f18b8cde"
darts_example.py 2.12 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import time
from argparse import ArgumentParser

import torch
import torch.nn as nn

import datasets
from nni.nas.pytorch.callbacks import ArchitectureCheckpoint, LRSchedulerCallback
Yuge Zhang's avatar
Yuge Zhang committed
13
from nni.algorithms.nas.pytorch.darts import DartsTrainer
14
15
16
from utils import accuracy

from nni.nas.pytorch.search_space_zoo import DartsCell
17
from darts_stack_cells import DartsStackedCells
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

logger = logging.getLogger('nni')

if __name__ == "__main__":
    parser = ArgumentParser("darts")
    parser.add_argument("--layers", default=8, type=int)
    parser.add_argument("--batch-size", default=64, type=int)
    parser.add_argument("--log-frequency", default=10, type=int)
    parser.add_argument("--epochs", default=50, type=int)
    parser.add_argument("--channels", default=16, type=int)
    parser.add_argument("--unrolled", default=False, action="store_true")
    parser.add_argument("--visualization", default=False, action="store_true")
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")

    model = DartsStackedCells(3, args.channels, 10, args.layers, DartsCell)
    criterion = nn.CrossEntropyLoss()

    optim = torch.optim.SGD(model.parameters(), 0.025, momentum=0.9, weight_decay=3.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, args.epochs, eta_min=0.001)

    trainer = DartsTrainer(model,
                           loss=criterion,
                           metrics=lambda output, target: accuracy(output, target, topk=(1,)),
                           optimizer=optim,
                           num_epochs=args.epochs,
                           dataset_train=dataset_train,
                           dataset_valid=dataset_valid,
                           batch_size=args.batch_size,
                           log_frequency=args.log_frequency,
                           unrolled=args.unrolled,
                           callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")])
    if args.visualization:
        trainer.enable_visualization()
    trainer.train()