train.py 2.6 KB
Newer Older
liuzhe-lz's avatar
liuzhe-lz committed
1
2
3
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

liuzhe-lz's avatar
liuzhe-lz committed
4
5
6
7
8
9
10
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras.layers import (AveragePooling2D, BatchNormalization, Conv2D, Dense, MaxPool2D)
from tensorflow.keras.losses import Reduction, SparseCategoricalCrossentropy
from tensorflow.keras.optimizers import SGD

from nni.nas.tensorflow.mutables import LayerChoice, InputChoice
Yuge Zhang's avatar
Yuge Zhang committed
11
from nni.algorithms.nas.tensorflow.enas import EnasTrainer
liuzhe-lz's avatar
liuzhe-lz committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56


class Net(Model):
    def __init__(self):
        super().__init__()
        self.conv1 = LayerChoice([
            Conv2D(6, 3, padding='same', activation='relu'),
            Conv2D(6, 5, padding='same', activation='relu'),
        ])
        self.pool = MaxPool2D(2)
        self.conv2 = LayerChoice([
            Conv2D(16, 3, padding='same', activation='relu'),
            Conv2D(16, 5, padding='same', activation='relu'),
        ])
        self.conv3 = Conv2D(16, 1)

        self.skipconnect = InputChoice(n_candidates=1)
        self.bn = BatchNormalization()

        self.gap = AveragePooling2D(2)
        self.fc1 = Dense(120, activation='relu')
        self.fc2 = Dense(84, activation='relu')
        self.fc3 = Dense(10)

    def call(self, x):
        bs = x.shape[0]

        t = self.conv1(x)
        x = self.pool(t)
        x0 = self.conv2(x)
        x1 = self.conv3(x0)

        x0 = self.skipconnect([x0])
        if x0 is not None:
            x1 += x0
        x = self.pool(self.bn(x1))

        x = self.gap(x)
        x = tf.reshape(x, [bs, -1])
        x = self.fc1(x)
        x = self.fc2(x)
        x = self.fc3(x)
        return x


liuzhe-lz's avatar
liuzhe-lz committed
57
def accuracy(truth, logits):
Yuge Zhang's avatar
Yuge Zhang committed
58
    truth = tf.reshape(truth, (-1, ))
liuzhe-lz's avatar
liuzhe-lz committed
59
60
61
62
63
64
65
    predicted = tf.cast(tf.math.argmax(logits, axis=1), truth.dtype)
    equal = tf.cast(predicted == truth, tf.int32)
    return tf.math.reduce_sum(equal).numpy() / equal.shape[0]

def accuracy_metrics(truth, logits):
    acc = accuracy(truth, logits)
    return {'accuracy': acc}
liuzhe-lz's avatar
liuzhe-lz committed
66
67
68
69


if __name__ == '__main__':
    cifar10 = tf.keras.datasets.cifar10
liuzhe-lz's avatar
liuzhe-lz committed
70
71
72
73
    (x_train, y_train), (x_valid, y_valid) = cifar10.load_data()
    x_train, x_valid = x_train / 255.0, x_valid / 255.0
    train_set = (x_train, y_train)
    valid_set = (x_valid, y_valid)
liuzhe-lz's avatar
liuzhe-lz committed
74
75

    net = Net()
liuzhe-lz's avatar
liuzhe-lz committed
76

liuzhe-lz's avatar
liuzhe-lz committed
77
78
    trainer = EnasTrainer(
        net,
liuzhe-lz's avatar
liuzhe-lz committed
79
80
        loss=SparseCategoricalCrossentropy(from_logits=True, reduction=Reduction.NONE),
        metrics=accuracy_metrics,
liuzhe-lz's avatar
liuzhe-lz committed
81
82
83
84
        reward_function=accuracy,
        optimizer=SGD(learning_rate=0.001, momentum=0.9),
        batch_size=64,
        num_epochs=2,
liuzhe-lz's avatar
liuzhe-lz committed
85
86
        dataset_train=train_set,
        dataset_valid=valid_set
liuzhe-lz's avatar
liuzhe-lz committed
87
88
89
    )

    trainer.train()