mobilenet.py 2.46 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import torch.nn as nn
import math


def conv_bn(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU(inplace=True)
    )


def conv_dw(inp, oup, stride):
    return nn.Sequential(
        nn.Conv2d(inp, inp, 3, stride, 1, groups=inp, bias=False),
        nn.BatchNorm2d(inp),
        nn.ReLU(inplace=True),

        nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU(inplace=True),
    )


class MobileNet(nn.Module):
    def __init__(self, n_class,  profile='normal'):
        super(MobileNet, self).__init__()

        # original
        if profile == 'normal':
            in_planes = 32
            cfg = [64, (128, 2), 128, (256, 2), 256, (512, 2), 512, 512, 512, 512, 512, (1024, 2), 1024]
        # 0.5 AMC
        elif profile == '0.5flops':
            in_planes = 24
            cfg = [48, (96, 2), 80, (192, 2), 200, (328, 2), 352, 368, 360, 328, 400, (736, 2), 752]
        else:
            raise NotImplementedError

        self.conv1 = conv_bn(3, in_planes, stride=2)

        self.features = self._make_layers(in_planes, cfg, conv_dw)

        self.classifier = nn.Sequential(
            nn.Linear(cfg[-1], n_class),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.conv1(x)
        x = self.features(x)
        x = x.mean(3).mean(2)  # global average pooling

        x = self.classifier(x)
        return x

    def _make_layers(self, in_planes, cfg, layer):
        layers = []
        for x in cfg:
            out_planes = x if isinstance(x, int) else x[0]
            stride = 1 if isinstance(x, int) else x[1]
            layers.append(layer(in_planes, out_planes, stride))
            in_planes = out_planes
        return nn.Sequential(*layers)

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                n = m.weight.size(1)
                m.weight.data.normal_(0, 0.01)
                m.bias.data.zero_()