"include/ck/utility/functional3.hpp" did not exist on "08c692433e527adb03995994c02181ea1ad8ba7e"
pruning_bert_glue.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
"""
Pruning Transformer with NNI
============================

Workable Pruning Process
------------------------

Here we show an effective transformer pruning process that NNI team has tried, and users can use NNI to discover better processes.

The entire pruning process can be divided into the following steps:

1. Finetune the pre-trained model on the downstream task. From our experience,
   the final performance of pruning on the finetuned model is better than pruning directly on the pre-trained model.
   At the same time, the finetuned model obtained in this step will also be used as the teacher model for the following
   distillation training.
2. Pruning the attention layer at first. Here we apply block-sparse on attention layer weight,
   and directly prune the head (condense the weight) if the head was fully masked.
   If the head was partially masked, we will not prune it and recover its weight.
3. Retrain the head-pruned model with distillation. Recover the model precision before pruning FFN layer.
4. Pruning the FFN layer. Here we apply the output channels pruning on the 1st FFN layer,
   and the 2nd FFN layer input channels will be pruned due to the pruning of 1st layer output channels.
5. Retrain the final pruned model with distillation.

During the process of pruning transformer, we gained some of the following experiences:

* We using :ref:`movement-pruner` in step 2 and :ref:`taylor-fo-weight-pruner` in step 4. :ref:`movement-pruner` has good performance on attention layers,
  and :ref:`taylor-fo-weight-pruner` method has good performance on FFN layers. These two pruners are all some kinds of gradient-based pruning algorithms,
  we also try weight-based pruning algorithms like :ref:`l1-norm-pruner`, but it doesn't seem to work well in this scenario.
* Distillation is a good way to recover model precision. In terms of results, usually 1~2% improvement in accuracy can be achieved when we prune bert on mnli task.
* It is necessary to gradually increase the sparsity rather than reaching a very high sparsity all at once.

Experiment
----------

Preparation
^^^^^^^^^^^
Please set ``dev_mode`` to ``False`` to run this tutorial. Here ``dev_mode`` is ``True`` by default is for generating documents.

The complete pruning process takes about 8 hours on one A100.
"""

dev_mode = True

# %%
# Some basic setting.

from pathlib import Path
from typing import Callable

pretrained_model_name_or_path = 'bert-base-uncased'
task_name = 'mnli'
experiment_id = 'pruning_bert'

# heads_num and layers_num should align with pretrained_model_name_or_path
heads_num = 12
layers_num = 12

# used to save the experiment log
log_dir = Path(f'./pruning_log/{pretrained_model_name_or_path}/{task_name}/{experiment_id}')
log_dir.mkdir(parents=True, exist_ok=True)

# used to save the finetuned model and share between different experiemnts with same pretrained_model_name_or_path and task_name
model_dir = Path(f'./models/{pretrained_model_name_or_path}/{task_name}')
model_dir.mkdir(parents=True, exist_ok=True)

from transformers import set_seed
set_seed(1024)

import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# %%
# The function used to create dataloaders, note that 'mnli' has two evaluation dataset.
# If teacher_model is set, will run all dataset on teacher model to get the 'teacher_logits' for distillation.

from torch.utils.data import DataLoader

from datasets import load_dataset
from transformers import BertTokenizerFast, DataCollatorWithPadding

task_to_keys = {
    'cola': ('sentence', None),
    'mnli': ('premise', 'hypothesis'),
    'mrpc': ('sentence1', 'sentence2'),
    'qnli': ('question', 'sentence'),
    'qqp': ('question1', 'question2'),
    'rte': ('sentence1', 'sentence2'),
    'sst2': ('sentence', None),
    'stsb': ('sentence1', 'sentence2'),
    'wnli': ('sentence1', 'sentence2'),
}

def prepare_data(cache_dir='./data', train_batch_size=32, eval_batch_size=32,
                    teacher_model: torch.nn.Module = None):
    tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path)
    sentence1_key, sentence2_key = task_to_keys[task_name]
    data_collator = DataCollatorWithPadding(tokenizer)

    # used to preprocess the raw data
    def preprocess_function(examples):
        # Tokenize the texts
        args = (
            (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
        )
        result = tokenizer(*args, padding=False, max_length=128, truncation=True)

        if 'label' in examples:
            # In all cases, rename the column to labels because the model will expect that.
            result['labels'] = examples['label']
        return result

    raw_datasets = load_dataset('glue', task_name, cache_dir=cache_dir)
    for key in list(raw_datasets.keys()):
        if 'test' in key:
            raw_datasets.pop(key)

    processed_datasets = raw_datasets.map(preprocess_function, batched=True,
                                            remove_columns=raw_datasets['train'].column_names)

    # if has teacher model, add 'teacher_logits' to datasets who has 'labels'.
    # 'teacher_logits' is used for distillation and avoid the double counting.
    if teacher_model:
        teacher_model_training = teacher_model.training
        teacher_model.eval()
        model_device = next(teacher_model.parameters()).device

        def add_teacher_logits(examples):
            result = {k: v for k, v in examples.items()}
            samples = data_collator(result).to(model_device)
            if 'labels' in samples:
                with torch.no_grad():
                    logits = teacher_model(**samples).logits.tolist()
                result['teacher_logits'] = logits
            return result

        processed_datasets = processed_datasets.map(add_teacher_logits, batched=True,
                                                    batch_size=train_batch_size)
        teacher_model.train(teacher_model_training)

    train_dataset = processed_datasets['train']
    validation_dataset = processed_datasets['validation_matched' if task_name == 'mnli' else 'validation']
    validation_dataset2 = processed_datasets['validation_mismatched'] if task_name == 'mnli' else None

    train_dataloader = DataLoader(train_dataset,
                                    shuffle=True,
                                    collate_fn=data_collator,
                                    batch_size=train_batch_size)
    validation_dataloader = DataLoader(validation_dataset,
                                        collate_fn=data_collator,
                                        batch_size=eval_batch_size)
    validation_dataloader2 = DataLoader(validation_dataset2,
                                        collate_fn=data_collator,
                                        batch_size=eval_batch_size) if task_name == 'mnli' else None

    return train_dataloader, validation_dataloader, validation_dataloader2

# %%
# Training function & evaluation function.

import time
import torch.nn.functional as F
from datasets import load_metric

def training(train_dataloader: DataLoader,
                model: torch.nn.Module,
                optimizer: torch.optim.Optimizer,
                criterion: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
                lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
                max_steps: int = None, max_epochs: int = None,
                save_best_model: bool = False, save_path: str = None,
                log_path: str = Path(log_dir) / 'training.log',
                distillation: bool = False,
                evaluation_func=None):
    model.train()
    current_step = 0
    best_result = 0

    for current_epoch in range(max_epochs if max_epochs else 1):
        for batch in train_dataloader:
            batch.to(device)
            teacher_logits = batch.pop('teacher_logits', None)
            optimizer.zero_grad()
            outputs = model(**batch)
            loss = outputs.loss

            if distillation:
                assert teacher_logits is not None
                distil_loss = F.kl_div(F.log_softmax(outputs.logits / 2, dim=-1),
                                        F.softmax(teacher_logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)
                loss = 0.1 * loss + 0.9 * distil_loss

            loss = criterion(loss, None)
            loss.backward()
            optimizer.step()

            if lr_scheduler:
                lr_scheduler.step()

            current_step += 1

            # evaluation for every 1000 steps
            if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
                result = evaluation_func(model) if evaluation_func else None
                with (log_path).open('a+') as f:
                    msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())), current_epoch, current_step, result)
                    f.write(msg)
                # if it's the best model, save it.
                if save_best_model and best_result < result['default']:
                    assert save_path is not None
                    torch.save(model.state_dict(), save_path)
                    best_result = result['default']

            if max_steps and current_step >= max_steps:
                return

def evaluation(validation_dataloader: DataLoader,
                validation_dataloader2: DataLoader,
                model: torch.nn.Module):
    training = model.training
    model.eval()
    is_regression = task_name == 'stsb'
    metric = load_metric('glue', task_name)

    for batch in validation_dataloader:
        batch.pop('teacher_logits', None)
        batch.to(device)
        outputs = model(**batch)
        predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
        metric.add_batch(
            predictions=predictions,
            references=batch['labels'],
        )
    result = metric.compute()

    if validation_dataloader2:
        for batch in validation_dataloader2:
            batch.pop('teacher_logits', None)
            batch.to(device)
            outputs = model(**batch)
            predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
            metric.add_batch(
                predictions=predictions,
                references=batch['labels'],
            )
        result = {'matched': result, 'mismatched': metric.compute()}
        result['default'] = (result['matched']['accuracy'] + result['mismatched']['accuracy']) / 2
    else:
        result['default'] = result.get('f1', result.get('accuracy', None))

    model.train(training)
    return result

# using huggingface native loss
def fake_criterion(outputs, targets):
    return outputs


# %%
# Prepare pre-trained model and finetuning on downstream task.

import functools

from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from transformers import BertForSequenceClassification

def create_pretrained_model():
    is_regression = task_name == 'stsb'
    num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
    return BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=num_labels)

def create_finetuned_model():
    pretrained_model = create_pretrained_model().to(device)

    train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data()
    evaluation_func = functools.partial(evaluation, validation_dataloader, validation_dataloader2)
    steps_per_epoch = len(train_dataloader)
    training_epochs = 3

    finetuned_model_state_path = Path(model_dir) / 'finetuned_model_state.pth'

    if finetuned_model_state_path.exists():
        pretrained_model.load_state_dict(torch.load(finetuned_model_state_path))
    elif dev_mode:
        pass
    else:
        optimizer = Adam(pretrained_model.parameters(), lr=3e-5, eps=1e-8)

        def lr_lambda(current_step: int):
            return max(0.0, float(training_epochs * steps_per_epoch - current_step) / float(training_epochs * steps_per_epoch))

        lr_scheduler = LambdaLR(optimizer, lr_lambda)
        training(train_dataloader, pretrained_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler, max_epochs=training_epochs,
                    save_best_model=True, save_path=finetuned_model_state_path, evaluation_func=evaluation_func)
    return pretrained_model

finetuned_model = create_finetuned_model()

# %%
# Using finetuned model as teacher model to create dataloader.
# Add 'teacher_logits' to dataset, it is used to do the distillation, it can be seen as a kind of data label.

if not dev_mode:
    train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data(teacher_model=finetuned_model)
else:
    train_dataloader, validation_dataloader, validation_dataloader2 = prepare_data()

evaluation_func = functools.partial(evaluation, validation_dataloader, validation_dataloader2)

# %%
# Pruning
# ^^^^^^^
# First, using MovementPruner to prune attention head.

steps_per_epoch = len(train_dataloader)

# Set training steps/epochs for pruning.

if not dev_mode:
    total_epochs = 4
    total_steps = total_epochs * steps_per_epoch
    warmup_steps = 1 * steps_per_epoch
    cooldown_steps = 1 * steps_per_epoch
else:
    total_epochs = 1
    total_steps = 3
    warmup_steps = 1
    cooldown_steps = 1

# Initialize evaluator used by MovementPruner.

import nni
from nni.algorithms.compression.v2.pytorch import TorchEvaluator

movement_training = functools.partial(training, train_dataloader, log_path=log_dir / 'movement_pruning.log',
                                    evaluation_func=evaluation_func)
traced_optimizer = nni.trace(Adam)(finetuned_model.parameters(), lr=3e-5, eps=1e-8)

def lr_lambda(current_step: int):
    if current_step < warmup_steps:
        return float(current_step) / warmup_steps
    return max(0.0, float(total_steps - current_step) / float(total_steps - warmup_steps))

traced_scheduler = nni.trace(LambdaLR)(traced_optimizer, lr_lambda)
evaluator = TorchEvaluator(movement_training, traced_optimizer, fake_criterion, traced_scheduler)

# Apply block-soft-movement pruning on attention layers.

from nni.compression.pytorch.pruning import MovementPruner

config_list = [{'op_types': ['Linear'], 'op_partial_names': ['bert.encoder.layer.{}.'.format(i) for i in range(layers_num)], 'sparsity': 0.1}]
pruner = MovementPruner(model=finetuned_model,
                        config_list=config_list,
                        evaluator=evaluator,
                        training_epochs=total_epochs,
                        training_steps=total_steps,
                        warm_up_step=warmup_steps,
                        cool_down_beginning_step=total_steps - cooldown_steps,
                        regular_scale=10,
                        movement_mode='soft',
                        sparse_granularity='auto')
_, attention_masks = pruner.compress()
pruner.show_pruned_weights()

torch.save(attention_masks, Path(log_dir) / 'attention_masks.pth')

# %%
# Load a new finetuned model to do the speedup.
# Note that nni speedup don't support replace attention module, so here we manully replace the attention module.
#
# If the head is entire masked, physically prune it and create config_list for FFN pruning.

attention_pruned_model = create_finetuned_model().to(device)
attention_masks = torch.load(Path(log_dir) / 'attention_masks.pth')

ffn_config_list = []
layer_count = 0
module_list = []
for i in range(0, layers_num):
    prefix = f'bert.encoder.layer.{i}.'
    value_mask: torch.Tensor = attention_masks[prefix + 'attention.self.value']['weight']
    head_mask = (value_mask.reshape(heads_num, -1).sum(-1) == 0.)
    head_idx = torch.arange(len(head_mask))[head_mask].long().tolist()
    print(f'layer {i} pruner {len(head_idx)} head: {head_idx}')
    if len(head_idx) != heads_num:
        attention_pruned_model.bert.encoder.layer[i].attention.prune_heads(head_idx)
        module_list.append(attention_pruned_model.bert.encoder.layer[i])
        # The final ffn weight remaining ratio is the half of the attention weight remaining ratio.
        # This is just an empirical configuration, you can use any other method to determine this sparsity.
        sparsity = 1 - (1 - len(head_idx) / heads_num) * 0.5
        # here we use a simple sparsity schedule, we will prune ffn in 12 iterations, each iteration prune `sparsity_per_iter`.
        sparsity_per_iter = 1 - (1 - sparsity) ** (1 / heads_num)
        ffn_config_list.append({'op_names': [f'bert.encoder.layer.{layer_count}.intermediate.dense'], 'sparsity': sparsity_per_iter})
        layer_count += 1

attention_pruned_model.bert.encoder.layer = torch.nn.ModuleList(module_list)

# %%
# Retrain the attention pruned model with distillation.

if not dev_mode:
    total_epochs = 5
    total_steps = None
    distillation = True
else:
    total_epochs = 1
    total_steps = 1
    distillation = False

optimizer = Adam(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)

def lr_lambda(current_step: int):
    return max(0.0, float(total_epochs * steps_per_epoch - current_step) / float(total_epochs * steps_per_epoch))

lr_scheduler = LambdaLR(optimizer, lr_lambda)
at_model_save_path = log_dir / 'attention_pruned_model_state.pth'
training(train_dataloader, attention_pruned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler,
         max_epochs=total_epochs, max_steps=total_steps, save_best_model=True, save_path=at_model_save_path,
         distillation=distillation, evaluation_func=evaluation_func)

if not dev_mode:
    attention_pruned_model.load_state_dict(torch.load(at_model_save_path))

# %%
# Iterative pruning FFN with TaylorFOWeightPruner in 12 iterations.
# Finetuning 2000 steps after each iteration, then finetuning 2 epochs after pruning finished.
# 
# NNI will support per-step-pruning-schedule in the future, then can use an pruner to replace the following code.

if not dev_mode:
    total_epochs = 4
    total_steps = None
    taylor_pruner_steps = 1000
    steps_per_iteration = 2000
    total_pruning_steps = 24000
    distillation = True
else:
    total_epochs = 1
    total_steps = 6
    taylor_pruner_steps = 2
    steps_per_iteration = 2
    total_pruning_steps = 4
    distillation = False

from nni.compression.pytorch.pruning import TaylorFOWeightPruner
from nni.compression.pytorch.speedup import ModelSpeedup

distil_training = functools.partial(training, train_dataloader, log_path=log_dir / 'taylor_pruning.log',
                                    distillation=distillation, evaluation_func=evaluation_func)
traced_optimizer = nni.trace(Adam)(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)
evaluator = TorchEvaluator(distil_training, traced_optimizer, fake_criterion)

current_step = 0
best_result = 0
init_lr = 3e-5

dummy_input = torch.rand(8, 128, 768).to(device)

attention_pruned_model.train()
for current_epoch in range(total_epochs):
    for batch in train_dataloader:
        if total_steps and current_step >= total_steps:
            break
        # pruning 12 times
        if current_step % steps_per_iteration == 0 and current_step < total_pruning_steps:
            check_point = attention_pruned_model.state_dict()
            pruner = TaylorFOWeightPruner(attention_pruned_model, ffn_config_list, evaluator, taylor_pruner_steps)
            _, ffn_masks = pruner.compress()
            renamed_ffn_masks = {}
            # rename the masks keys, because we only speedup the bert.encoder
            for model_name, targets_mask in ffn_masks.items():
                renamed_ffn_masks[model_name.split('bert.encoder.')[1]] = targets_mask
            pruner._unwrap_model()
            attention_pruned_model.load_state_dict(check_point)
            ModelSpeedup(attention_pruned_model.bert.encoder, dummy_input, renamed_ffn_masks).speedup_model()
            optimizer = Adam(attention_pruned_model.parameters(), lr=init_lr)

        batch.to(device)
        teacher_logits = batch.pop('teacher_logits', None)
        optimizer.zero_grad()

        # manually schedule lr
        for params_group in optimizer.param_groups:
            params_group['lr'] = (1 - current_step / (total_epochs * steps_per_epoch)) * init_lr

        outputs = attention_pruned_model(**batch)
        loss = outputs.loss

        # distillation
        if teacher_logits is not None:
            distil_loss = F.kl_div(F.log_softmax(outputs.logits / 2, dim=-1),
                                    F.softmax(teacher_logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)
            loss = 0.1 * loss + 0.9 * distil_loss
        loss.backward()
        optimizer.step()

        current_step += 1
        if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
            result = evaluation_func(attention_pruned_model)
            with (log_dir / 'ffn_pruning.log').open('a+') as f:
                msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())),
                                                            current_epoch, current_step, result)
                f.write(msg)
            if current_step >= total_pruning_steps and best_result < result['default']:
                torch.save(attention_pruned_model, log_dir / 'best_model.pth')
                best_result = result['default']

# %%
# Result
# ------
# The speedup is test on the entire validation dataset with batch size 32 on A100.
# We test under two pytorch version and found the latency varying widely.
# 
# Setting 1: pytorch 1.12.1
#
# Setting 2: pytorch 1.10.0
# 
# .. list-table:: Prune Bert-base-uncased on MNLI
#     :header-rows: 1
#     :widths: auto
#
#     * - Attention Pruning Method
#       - FFN Pruning Method
#       - Total Sparsity
#       - Accuracy
#       - Acc. Drop
#       - Speedup (S1)
#       - Speedup (S2)
#     * -
#       -
#       - 0%
#       - 84.73 / 84.63
#       - +0.0 / +0.0
#       - 12.56s (x1.00)
#       - 4.05s (x1.00)
#     * - :ref:`movement-pruner` (soft, th=0.1, lambda=5)
#       - :ref:`taylor-fo-weight-pruner`
#       - 51.39%
#       - 84.25 / 84.96
#       - -0.48 / +0.33
#       - 6.85s (x1.83)
#       - 2.7s (x1.50)
#     * - :ref:`movement-pruner` (soft, th=0.1, lambda=10)
#       - :ref:`taylor-fo-weight-pruner`
#       - 66.67%
#       - 83.98 / 83.75
#       - -0.75 / -0.88
#       - 4.73s (x2.66)
#       - 2.16s (x1.86)
#     * - :ref:`movement-pruner` (soft, th=0.1, lambda=20)
#       - :ref:`taylor-fo-weight-pruner`
#       - 77.78%
#       - 83.02 / 83.06
#       - -1.71 / -1.57
#       - 3.35s (x3.75)
#       - 1.72s (x2.35)
#     * - :ref:`movement-pruner` (soft, th=0.1, lambda=30)
#       - :ref:`taylor-fo-weight-pruner`
#       - 87.04%
#       - 81.24 / 80.99
#       - -3.49 / -3.64
#       - 2.19s (x5.74)
#       - 1.31s (x3.09)