"src/vscode:/vscode.git/clone" did not exist on "cb6563d0a45e194f1df1e8f0e2b10ead921963af"
macro.py 5.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from argparse import ArgumentParser
import torch
import torch.nn as nn

import datasets
from ops import FactorizedReduce, ConvBranch, PoolBranch
from nni.nas.pytorch import mutables, enas


class ENASLayer(nn.Module):

    def __init__(self, layer_id, in_filters, out_filters):
        super().__init__()
        self.in_filters = in_filters
        self.out_filters = out_filters
        self.mutable = mutables.LayerChoice([
            ConvBranch(in_filters, out_filters, 3, 1, 1, separable=False),
            ConvBranch(in_filters, out_filters, 3, 1, 1, separable=True),
            ConvBranch(in_filters, out_filters, 5, 1, 2, separable=False),
            ConvBranch(in_filters, out_filters, 5, 1, 2, separable=True),
            PoolBranch('avg', in_filters, out_filters, 3, 1, 1),
            PoolBranch('max', in_filters, out_filters, 3, 1, 1)
        ])
        if layer_id > 0:
            self.skipconnect = mutables.InputChoice(layer_id, n_selected=None, reduction="sum")
        else:
            self.skipconnect = None
        self.batch_norm = nn.BatchNorm2d(out_filters, affine=False)
        self.mutable_scope = mutables.MutableScope("layer_{}".format(layer_id))

    def forward(self, prev_layers):
        with self.mutable_scope:
            out = self.mutable(prev_layers[-1])
            if self.skipconnect is not None:
                connection = self.skipconnect(prev_layers[:-1],
                                              ["layer_{}".format(i) for i in range(len(prev_layers) - 1)])
                if connection is not None:
                    out += connection
            return self.batch_norm(out)


class GeneralNetwork(nn.Module):
    def __init__(self, num_layers=12, out_filters=24, in_channels=3, num_classes=10,
                 dropout_rate=0.0):
        super().__init__()
        self.num_layers = num_layers
        self.num_classes = num_classes
        self.out_filters = out_filters

        self.stem = nn.Sequential(
            nn.Conv2d(in_channels, out_filters, 3, 1, 1, bias=False),
            nn.BatchNorm2d(out_filters)
        )

        pool_distance = self.num_layers // 3
        self.pool_layers_idx = [pool_distance - 1, 2 * pool_distance - 1]
        self.dropout_rate = dropout_rate
        self.dropout = nn.Dropout(self.dropout_rate)

        self.layers = nn.ModuleList()
        self.pool_layers = nn.ModuleList()
        for layer_id in range(self.num_layers):
            if layer_id in self.pool_layers_idx:
                self.pool_layers.append(FactorizedReduce(self.out_filters, self.out_filters))
            self.layers.append(ENASLayer(layer_id, self.out_filters, self.out_filters))

        self.gap = nn.AdaptiveAvgPool2d(1)
        self.dense = nn.Linear(self.out_filters, self.num_classes)

    def forward(self, x):
        bs = x.size(0)
        cur = self.stem(x)

        layers = [cur]

        for layer_id in range(self.num_layers):
            cur = self.layers[layer_id](layers)
            layers.append(cur)
            if layer_id in self.pool_layers_idx:
                for i, layer in enumerate(layers):
                    layers[i] = self.pool_layers[self.pool_layers_idx.index(layer_id)](layer)
                cur = layers[-1]

        cur = self.gap(cur).view(bs, -1)
        cur = self.dropout(cur)
        logits = self.dense(cur)
        return logits


def accuracy(output, target, topk=(1,)):
    """ Computes the precision@k for the specified values of k """
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    # one-hot case
    if target.ndimension() > 1:
        target = target.max(1)[1]

    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = dict()
    for k in topk:
        correct_k = correct[:k].view(-1).float().sum(0)
        res["acc{}".format(k)] = correct_k.mul_(1.0 / batch_size).item()
    return res


def reward_accuracy(output, target, topk=(1,)):
    batch_size = target.size(0)
    _, predicted = torch.max(output.data, 1)
    return (predicted == target).sum().item() / batch_size


if __name__ == "__main__":
    parser = ArgumentParser("enas")
    parser.add_argument("--batch-size", default=3, type=int)
    parser.add_argument("--log-frequency", default=1, type=int)
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")

    model = GeneralNetwork()
    criterion = nn.CrossEntropyLoss()

    n_epochs = 310
    optim = torch.optim.SGD(model.parameters(), 0.05, momentum=0.9, weight_decay=1.0E-4)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=n_epochs, eta_min=0.001)

    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=accuracy,
                               reward_function=reward_accuracy,
                               optimizer=optim,
                               lr_scheduler=lr_scheduler,
                               batch_size=args.batch_size,
                               num_epochs=n_epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
                               log_frequency=args.log_frequency)
    trainer.train()