basic_pruners_torch.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

'''
NNI example for supported basic pruning algorithms.
In this example, we show the end-to-end pruning process: pre-training -> pruning -> fine-tuning.
Note that pruners use masks to simulate the real pruning. In order to obtain a real compressed model, model speed up is required.
You can also try auto_pruners_torch.py to see the usage of some automatic pruning algorithms.

'''
import logging

import argparse
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from torchvision import datasets, transforms

from models.mnist.lenet import LeNet
from models.cifar10.vgg import VGG

from nni.compression.pytorch.utils.counter import count_flops_params

import nni
from nni.compression.pytorch import apply_compression_results, ModelSpeedup
from nni.algorithms.compression.pytorch.pruning import (
    LevelPruner,
    SlimPruner,
    FPGMPruner,
    L1FilterPruner,
    L2FilterPruner,
    AGPPruner,
J-shang's avatar
J-shang committed
37
    ActivationMeanRankFilterPruner,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    ActivationAPoZRankFilterPruner
)


_logger = logging.getLogger('mnist_example')
_logger.setLevel(logging.INFO)

str2pruner = {
    'level': LevelPruner,
    'l1filter': L1FilterPruner,
    'l2filter': L2FilterPruner,
    'slim': SlimPruner,
    'agp': AGPPruner,
    'fpgm': FPGMPruner,
J-shang's avatar
J-shang committed
52
    'mean_activation': ActivationMeanRankFilterPruner,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    'apoz': ActivationAPoZRankFilterPruner
}

def get_dummy_input(args, device):
    if args.dataset == 'mnist':
        dummy_input = torch.randn([args.test_batch_size, 1, 28, 28]).to(device)
    elif args.dataset in ['cifar10', 'imagenet']:
        dummy_input = torch.randn([args.test_batch_size, 3, 32, 32]).to(device)
    return dummy_input

def get_pruner(model, pruner_name, device, optimizer=None, dependency_aware=False):

    pruner_cls = str2pruner[pruner_name]

    if pruner_name == 'level':
        config_list = [{
            'sparsity': args.sparsity,
            'op_types': ['default']
        }]
J-shang's avatar
J-shang committed
72
    elif pruner_name in ['l1filter', 'mean_activation', 'apoz']:
73
74
75
76
77
78
79
80
81
82
83
84
        # Reproduced result in paper 'PRUNING FILTERS FOR EFFICIENT CONVNETS',
        # Conv_1, Conv_8, Conv_9, Conv_10, Conv_11, Conv_12 are pruned with 50% sparsity, as 'VGG-16-pruned-A'
        config_list = [{
            'sparsity': args.sparsity,
            'op_types': ['Conv2d'],
            'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
        }]
    elif pruner_name == 'slim':
        config_list = [{
            'sparsity': args.sparsity,
            'op_types': ['BatchNorm2d'],
        }]
J-shang's avatar
J-shang committed
85
86
87
88
89
90
91
92
93
    elif pruner_name == 'agp':
        config_list = [{
            'initial_sparsity': 0.,
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
            'op_types': ['Conv2d']
        }]
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    else:
        config_list = [{
            'sparsity': args.sparsity,
            'op_types': ['Conv2d']
        }]

    kw_args = {}
    if dependency_aware:
        dummy_input = get_dummy_input(args, device)
        print('Enable the dependency_aware mode')
        # note that, not all pruners support the dependency_aware mode
        kw_args['dependency_aware'] = True
        kw_args['dummy_input'] = dummy_input

    pruner = pruner_cls(model, config_list, optimizer, **kw_args)
    return pruner

def get_data(dataset, data_dir, batch_size, test_batch_size):
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

    if dataset == 'mnist':
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(data_dir, train=True, download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=batch_size, shuffle=True, **kwargs)
        test_loader = torch.utils.data.DataLoader(
            datasets.MNIST(data_dir, train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=test_batch_size, shuffle=True, **kwargs)
        criterion = torch.nn.NLLLoss()
    elif dataset == 'cifar10':
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(data_dir, train=True, transform=transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
            batch_size=batch_size, shuffle=True, **kwargs)

        test_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(data_dir, train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])),
            batch_size=batch_size, shuffle=False, **kwargs)
        criterion = torch.nn.CrossEntropyLoss()
    return train_loader, test_loader, criterion

def get_model_optimizer_scheduler(args, device, train_loader, test_loader, criterion):
    if args.model == 'lenet':
        model = LeNet().to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
J-shang's avatar
J-shang committed
163
                optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)
164
165
166
167
168
    elif args.model == 'vgg19':
        model = VGG(depth=19).to(device)
        if args.pretrained_model_dir is None:
            optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
            scheduler = MultiStepLR(
J-shang's avatar
J-shang committed
169
                optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    else:
        raise ValueError("model not recognized")

    if args.pretrained_model_dir is None:
        print('start pre-training...')
        best_acc = 0
        for epoch in range(args.pretrain_epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch, sparse_bn=True if args.pruner == 'slim' else False)
            scheduler.step()
            acc = test(args, model, device, criterion, test_loader)
            if acc > best_acc:
                best_acc = acc
                state_dict = model.state_dict()

        model.load_state_dict(state_dict)
        acc = best_acc

        torch.save(state_dict, os.path.join(args.experiment_data_dir, f'pretrain_{args.dataset}_{args.model}.pth'))
        print('Model trained saved to %s' % args.experiment_data_dir)

    else:
        model.load_state_dict(torch.load(args.pretrained_model_dir))
        best_acc = test(args, model, device, criterion, test_loader)

    # setup new opotimizer for fine-tuning
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
J-shang's avatar
J-shang committed
196
197
    scheduler = MultiStepLR(optimizer, milestones=[int(args.pretrain_epochs * 0.5), int(args.pretrain_epochs * 0.75)], gamma=0.1)

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
    print('Pretrained model acc:', best_acc)
    return model, optimizer, scheduler

def updateBN(model):
    for m in model.modules():
        if isinstance(m, nn.BatchNorm2d):
            m.weight.grad.data.add_(0.0001 * torch.sign(m.weight.data))

def train(args, model, device, train_loader, criterion, optimizer, epoch, sparse_bn=False):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()

        if sparse_bn:
            # L1 regularization on BN layer
            updateBN(model)

        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))
            if args.dry_run:
                break

def test(args, model, device, criterion, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)
    acc = 100 * correct / len(test_loader.dataset)

    print('Test Loss: {}  Accuracy: {}%\n'.format(
        test_loss, acc))
    return acc


def main(args):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    os.makedirs(args.experiment_data_dir, exist_ok=True)

    # prepare model and data
    train_loader, test_loader, criterion = get_data(args.dataset, args.data_dir, args.batch_size, args.test_batch_size)

    model, optimizer, scheduler = get_model_optimizer_scheduler(args, device, train_loader, test_loader, criterion)

    dummy_input = get_dummy_input(args, device)
    flops, params, results = count_flops_params(model, dummy_input)
    print(f"FLOPs: {flops}, params: {params}")

    print('start pruning...')
    model_path = os.path.join(args.experiment_data_dir, 'pruned_{}_{}_{}.pth'.format(
        args.model, args.dataset, args.pruner))
    mask_path = os.path.join(args.experiment_data_dir, 'mask_{}_{}_{}.pth'.format(
        args.model, args.dataset, args.pruner))

    pruner = get_pruner(model, args.pruner, device, optimizer, args.dependency_aware)
    model = pruner.compress()

    if args.multi_gpu and torch.cuda.device_count() > 1:
        model = nn.DataParallel(model)

    if args.test_only:
        test(args, model, device, criterion, test_loader)

    best_top1 = 0
    for epoch in range(args.fine_tune_epochs):
        pruner.update_epoch(epoch)
        print('# Epoch {} #'.format(epoch))
        train(args, model, device, train_loader, criterion, optimizer, epoch)
        scheduler.step()
        top1 = test(args, model, device, criterion, test_loader)
        if top1 > best_top1:
            best_top1 = top1
            # Export the best model, 'model_path' stores state_dict of the pruned model,
            # mask_path stores mask_dict of the pruned model
            pruner.export_model(model_path=model_path, mask_path=mask_path)

    if args.nni:
        nni.report_final_result(best_top1)

    if args.speed_up:
        # reload the best checkpoint for speed-up
        args.pretrained_model_dir = model_path
        model, _, _ = get_model_optimizer_scheduler(args, device, train_loader, test_loader, criterion)
        model.eval()
J-shang's avatar
J-shang committed
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
        apply_compression_results(model, mask_path, device)

        # test model speed
        start = time.time()
        for _ in range(32):
            use_mask_out = model(dummy_input)
        print('elapsed time when use mask: ', time.time() - start)

        m_speedup = ModelSpeedup(model, dummy_input, mask_path, device)
        m_speedup.speedup_model()

        flops, params, results = count_flops_params(model, dummy_input)
        print(f"FLOPs: {flops}, params: {params}")

        start = time.time()
        for _ in range(32):
            use_speedup_out = model(dummy_input)
        print('elapsed time when use speedup: ', time.time() - start)

        top1 = test(args, model, device, criterion, test_loader)

if __name__ == '__main__':

    parser = argparse.ArgumentParser(description='PyTorch Example for model comporession')

    # dataset and model
    parser.add_argument('--dataset', type=str, default='cifar10',
                        help='dataset to use, mnist, cifar10 or imagenet')
    parser.add_argument('--data-dir', type=str, default='./data/',
                        help='dataset directory')
    parser.add_argument('--model', type=str, default='vgg16',
J-shang's avatar
J-shang committed
327
                        choices=['lenet', 'vgg16', 'vgg19', 'resnet18'],
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
                        help='model to use')
    parser.add_argument('--pretrained-model-dir', type=str, default=None,
                        help='path to pretrained model')
    parser.add_argument('--pretrain-epochs', type=int, default=160,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--batch-size', type=int, default=128,
                        help='input batch size for training')
    parser.add_argument('--test-batch-size', type=int, default=200,
                        help='input batch size for testing')
    parser.add_argument('--experiment-data-dir', type=str, default='./experiment_data',
                        help='For saving output checkpoints')
    parser.add_argument('--log-interval', type=int, default=100, metavar='N',
                        help='how many batches to wait before logging training status')
    parser.add_argument('--dry-run', action='store_true', default=False,
                        help='quickly check a single pass')
    parser.add_argument('--multi-gpu', action='store_true', default=False,
                        help='run on mulitple gpus')
    parser.add_argument('--test-only', action='store_true', default=False,
                        help='run test only')

    # pruner
    parser.add_argument('--sparsity', type=float, default=0.5,
                        help='target overall target sparsity')
    parser.add_argument('--dependency-aware', action='store_true', default=False,
                        help='toggle dependency aware mode')
    parser.add_argument('--pruner', type=str, default='l1filter',
                        choices=['level', 'l1filter', 'l2filter', 'slim', 'agp',
J-shang's avatar
J-shang committed
355
                                 'fpgm', 'mean_activation', 'apoz'],
356
357
358
359
360
                        help='pruner to use')

    # fine-tuning
    parser.add_argument('--fine-tune-epochs', type=int, default=160,
                        help='epochs to fine tune')
J-shang's avatar
J-shang committed
361

362
363
364
365
    # speed-up
    parser.add_argument('--speed-up', action='store_true', default=False,
                        help='whether to speed-up the pruned model')

J-shang's avatar
J-shang committed
366
    parser.add_argument('--nni', action='store_true', default=False,
367
368
369
370
371
                        help="whether to tune the pruners using NNi tuners")

    args = parser.parse_args()

    if args.nni:
J-shang's avatar
J-shang committed
372
373
374
375
376
        params = nni.get_next_parameter()
        print(params)
        args.sparsity = params['sparsity']
        args.pruner = params['pruner']
        args.model = params['pruner']
377
378

    main(args)