focal_loss.py 2.81 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import torch
import torch.nn as nn
import torch.nn.functional as F

class FocalLoss2d(nn.Module):

    def __init__(self, gamma=2, size_average=True):
        super(FocalLoss2d, self).__init__()
        self.gamma = gamma
        self.size_average = size_average


    def forward(self, logit, target, class_weight=None, type='sigmoid'):
        target = target.view(-1, 1).long()
36

chicm-ms's avatar
chicm-ms committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
        if type=='sigmoid':
            if class_weight is None:
                class_weight = [1]*2 #[0.5, 0.5]

            prob   = torch.sigmoid(logit)
            prob   = prob.view(-1, 1)
            prob   = torch.cat((1-prob, prob), 1)
            select = torch.FloatTensor(len(prob), 2).zero_().cuda()
            select.scatter_(1, target, 1.)

        elif  type=='softmax':
            B,C,H,W = logit.size()
            if class_weight is None:
                class_weight =[1]*C #[1/C]*C

            logit   = logit.permute(0, 2, 3, 1).contiguous().view(-1, C)
            prob    = F.softmax(logit,1)
            select  = torch.FloatTensor(len(prob), C).zero_().cuda()
            select.scatter_(1, target, 1.)

        class_weight = torch.FloatTensor(class_weight).cuda().view(-1,1)
        class_weight = torch.gather(class_weight, 0, target)

        prob       = (prob*select).sum(1).view(-1,1)
        prob       = torch.clamp(prob,1e-8,1-1e-8)
        batch_loss = - class_weight *(torch.pow((1-prob), self.gamma))*prob.log()

        if self.size_average:
            loss = batch_loss.mean()
        else:
            loss = batch_loss

        return loss


if __name__ == '__main__':
    L = FocalLoss2d()
    out = torch.randn(2, 3, 3).cuda()
    target = (torch.sigmoid(out) > 0.5).float()
    loss = L(out, target)
    print(loss)