main.py 5.8 KB
Newer Older
1
2
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
3
import argparse
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn

import torchvision
import torchvision.transforms as transforms

import os
import argparse
import logging

from models import *
from utils import progress_bar

import nni

_logger = logging.getLogger("cifar10_pytorch_automl")

trainloader = None
testloader = None
net = None
criterion = None
optimizer = None
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0.0  # best test accuracy
start_epoch = 0  # start from epoch 0 or last checkpoint epoch

def prepare(args):
    global trainloader
    global testloader
    global net
    global criterion
    global optimizer

    # Data
    print('==> Preparing data..')
    transform_train = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    transform_test = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
    ])

    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)

    testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
    testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

    #classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

    # Model
    print('==> Building model..')
    if args['model'] == 'vgg':
        net = VGG('VGG19')
    if args['model'] == 'resnet18':
        net = ResNet18()
    if args['model'] == 'googlenet':
        net = GoogLeNet()
    if args['model'] == 'densenet121':
        net = DenseNet121()
    if args['model'] == 'mobilenet':
        net = MobileNet()
    if args['model'] == 'dpn92':
        net = DPN92()
    if args['model'] == 'shufflenetg2':
        net = ShuffleNetG2()
    if args['model'] == 'senet18':
        net = SENet18()

    net = net.to(device)
    if device == 'cuda':
        net = torch.nn.DataParallel(net)
        cudnn.benchmark = True

    criterion = nn.CrossEntropyLoss()
    #optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)

    if args['optimizer'] == 'SGD':
        optimizer = optim.SGD(net.parameters(), lr=args['lr'], momentum=0.9, weight_decay=5e-4)
    if args['optimizer'] == 'Adadelta':
        optimizer = optim.Adadelta(net.parameters(), lr=args['lr'])
    if args['optimizer'] == 'Adagrad':
        optimizer = optim.Adagrad(net.parameters(), lr=args['lr'])
    if args['optimizer'] == 'Adam':
        optimizer = optim.Adam(net.parameters(), lr=args['lr'])
    if args['optimizer'] == 'Adamax':
98
        optimizer = optim.Adam(net.parameters(), lr=args['lr'])
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176


# Training
def train(epoch):
    global trainloader
    global testloader
    global net
    global criterion
    global optimizer

    print('\nEpoch: %d' % epoch)
    net.train()
    train_loss = 0
    correct = 0
    total = 0
    for batch_idx, (inputs, targets) in enumerate(trainloader):
        inputs, targets = inputs.to(device), targets.to(device)
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, targets)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        _, predicted = outputs.max(1)
        total += targets.size(0)
        correct += predicted.eq(targets).sum().item()

        acc = 100.*correct/total

        progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
            % (train_loss/(batch_idx+1), 100.*correct/total, correct, total))

def test(epoch):
    global best_acc
    global trainloader
    global testloader
    global net
    global criterion
    global optimizer

    net.eval()
    test_loss = 0
    correct = 0
    total = 0
    with torch.no_grad():
        for batch_idx, (inputs, targets) in enumerate(testloader):
            inputs, targets = inputs.to(device), targets.to(device)
            outputs = net(inputs)
            loss = criterion(outputs, targets)

            test_loss += loss.item()
            _, predicted = outputs.max(1)
            total += targets.size(0)
            correct += predicted.eq(targets).sum().item()

            acc = 100.*correct/total

            progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'
                % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))

    # Save checkpoint.
    acc = 100.*correct/total
    if acc > best_acc:
        print('Saving..')
        state = {
            'net': net.state_dict(),
            'acc': acc,
            'epoch': epoch,
        }
        if not os.path.isdir('checkpoint'):
            os.mkdir('checkpoint')
        torch.save(state, './checkpoint/ckpt.t7')
        best_acc = acc
    return acc, best_acc


if __name__ == '__main__':
177
178
179
180
    parser = argparse.ArgumentParser()
    parser.add_argument("--epochs", type=int, default=200)
    args, _ = parser.parse_known_args()

181
    try:
chicm-ms's avatar
chicm-ms committed
182
        RCV_CONFIG = nni.get_next_parameter()
183
184
185
186
187
188
        #RCV_CONFIG = {'lr': 0.1, 'optimizer': 'Adam', 'model':'senet18'}
        _logger.debug(RCV_CONFIG)

        prepare(RCV_CONFIG)
        acc = 0.0
        best_acc = 0.0
189
        for epoch in range(start_epoch, start_epoch+args.epochs):
190
191
192
193
194
195
196
197
            train(epoch)
            acc, best_acc = test(epoch)
            nni.report_intermediate_result(acc)

        nni.report_final_result(best_acc)
    except Exception as exception:
        _logger.exception(exception)
        raise