"test/ut/nas/test_nn.py" did not exist on "2f3c3951cf63b3879c043485062c8d2a5fe8fe91"
test_nn.py 48.6 KB
Newer Older
1
import math
2
3
import random
import unittest
4
from collections import Counter
5

6
7
import pytest

8
import nni
9
import nni.retiarii.evaluator.pytorch.lightning as pl
10
import nni.retiarii.nn.pytorch as nn
11
import pytorch_lightning
12
13
import torch
import torch.nn.functional as F
Yuge Zhang's avatar
Yuge Zhang committed
14
from nni.retiarii import InvalidMutation, Sampler, basic_unit
15
16
from nni.retiarii.converter import convert_to_graph
from nni.retiarii.codegen import model_to_pytorch_script
17
from nni.retiarii.evaluator import FunctionalEvaluator
18
from nni.retiarii.execution.utils import _unpack_if_only_one
19
from nni.retiarii.experiment.pytorch import preprocess_model
20
21
22
from nni.retiarii.graph import Model
from nni.retiarii.nn.pytorch.api import ValueChoice
from nni.retiarii.nn.pytorch.mutator import process_evaluator_mutations, process_inline_mutation, extract_mutation_from_pt_module
23
from nni.retiarii.serializer import model_wrapper
24
from nni.retiarii.utils import ContextStack, NoContextError, original_state_dict_hooks
25

26
27
28
29
from .models import (
    CellSimple, CellDefaultArgs, CellCustomProcessor, CellLooseEnd, CellOpFactory
)

30

31
class EnumerateSampler(Sampler):
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
    def __init__(self):
        self.index = 0

    def choice(self, candidates, *args, **kwargs):
        choice = candidates[self.index % len(candidates)]
        self.index += 1
        return choice


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


50
@basic_unit
51
52
53
54
55
56
57
58
59
60
61
62
63
class MutableConv(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
        self.conv2 = nn.Conv2d(3, 5, kernel_size=1)

    def forward(self, x: torch.Tensor, index: int):
        if index == 0:
            return self.conv1(x)
        else:
            return self.conv2(x)


64
65
66
67
68
69
70
71
72
73
def _apply_all_mutators(model, mutators, samplers):
    if not isinstance(samplers, list):
        samplers = [samplers for _ in range(len(mutators))]
    assert len(samplers) == len(mutators)
    model_new = model
    for mutator, sampler in zip(mutators, samplers):
        model_new = mutator.bind_sampler(sampler).apply(model_new)
    return model_new


74
class GraphIR(unittest.TestCase):
75
76
    # graph engine will have an extra mutator for parameter choices
    value_choice_incr = 1
77
78
    # graph engine has an extra mutator to apply the depth choice to nodes
    repeat_incr = 1
79
80
    # graph engine parse the model into graph
    graph_engine = True
81
82
83
84
85
86
87
88
89
90
91

    def _convert_to_ir(self, model):
        script_module = torch.jit.script(model)
        return convert_to_graph(script_module, model)

    def _get_converted_pytorch_model(self, model_ir):
        model_code = model_to_pytorch_script(model_ir)
        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        return exec_vars['converted_model']

92
93
94
95
96
    def _get_model_with_mutators(self, pytorch_model):
        model = self._convert_to_ir(pytorch_model)
        mutators = process_inline_mutation(model)
        return model, mutators

97
    def test_layer_choice(self):
98
        @model_wrapper
99
100
101
102
103
104
105
106
107
108
109
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

110
        model, mutators = self._get_model_with_mutators(Net())
111
        self.assertEqual(len(mutators), 1)
112
        mutator = mutators[0].bind_sampler(EnumerateSampler())
113
114
115
116
117
118
119
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

120
    def test_layer_choice_multiple(self):
121
        @model_wrapper
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            self.assertEqual(self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3)).size(),
                             torch.Size([1, i, 3, 3]))

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
    def test_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([nn.Conv2d(3, i, kernel_size=1) for i in range(1, 11)])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        for i in range(1, 11):
            model_new = mutator.apply(model)
            model_new = self._get_converted_pytorch_model(model_new)
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            inp = torch.randn(1, 3, 3, 3)
            a = getattr(orig_model.module, str(i - 1))(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

161
    def test_nested_layer_choice(self):
162
        @model_wrapper
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 3, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 1, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))(input).size(),
                         torch.Size([1, 5, 5, 5]))

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    def test_nested_layer_choice_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.LayerChoice([
                    nn.LayerChoice([nn.Conv2d(3, 3, kernel_size=1),
                                    nn.Conv2d(3, 4, kernel_size=1),
                                    nn.Conv2d(3, 5, kernel_size=1)]),
                    nn.Conv2d(3, 1, kernel_size=1)
                ])

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
        mutators[0].bind_sampler(EnumerateSampler())
        mutators[1].bind_sampler(EnumerateSampler())
        input = torch.randn(1, 3, 5, 5)

        for i in range(3):
            model_new = self._get_converted_pytorch_model(mutators[1].apply(mutators[0].apply(model)))
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)
            if i == 0:
                a = getattr(getattr(orig_model.module, '0'), '0')(input)
            elif i == 1:
                a = getattr(orig_model.module, '1')(input)
            elif i == 2:
                a = getattr(getattr(orig_model.module, '0'), '2')(input)
            b = model_new(input)
            self.assertLess((a - b).abs().max().item(), 1E-4)

222
    def test_input_choice(self):
223
        @model_wrapper
224
225
226
227
228
229
230
231
232
233
234
235
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 5, kernel_size=1)
                self.input = nn.InputChoice(2)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

236
        model, mutators = self._get_model_with_mutators(Net())
237
        self.assertEqual(len(mutators), 1)
238
        mutator = mutators[0].bind_sampler(EnumerateSampler())
239
240
241
242
243
244
245
246
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

    def test_chosen_inputs(self):
247
        @model_wrapper
248
249
250
251
252
253
254
255
256
257
258
259
260
        class Net(nn.Module):
            def __init__(self, reduction):
                super().__init__()
                self.conv1 = nn.Conv2d(3, 3, kernel_size=1)
                self.conv2 = nn.Conv2d(3, 3, kernel_size=1)
                self.input = nn.InputChoice(2, n_chosen=2, reduction=reduction)

            def forward(self, x):
                x1 = self.conv1(x)
                x2 = self.conv2(x)
                return self.input([x1, x2])

        for reduction in ['none', 'sum', 'mean', 'concat']:
261
            model, mutators = self._get_model_with_mutators(Net(reduction))
262
            self.assertEqual(len(mutators), 1)
263
            mutator = mutators[0].bind_sampler(EnumerateSampler())
264
265
266
267
268
269
270
271
272
273
274
275
            model = mutator.apply(model)
            result = self._get_converted_pytorch_model(model)(torch.randn(1, 3, 3, 3))
            if reduction == 'none':
                self.assertEqual(len(result), 2)
                self.assertEqual(result[0].size(), torch.Size([1, 3, 3, 3]))
                self.assertEqual(result[1].size(), torch.Size([1, 3, 3, 3]))
            elif reduction == 'concat':
                self.assertEqual(result.size(), torch.Size([1, 6, 3, 3]))
            else:
                self.assertEqual(result.size(), torch.Size([1, 3, 3, 3]))

    def test_value_choice(self):
276
        @model_wrapper
277
278
279
280
281
282
283
284
285
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.index = nn.ValueChoice([0, 1])
                self.conv = MutableConv()

            def forward(self, x):
                return self.conv(x, self.index())

286
        model, mutators = self._get_model_with_mutators(Net())
287
        self.assertEqual(len(mutators), 1)
288
        mutator = mutators[0].bind_sampler(EnumerateSampler())
289
290
291
292
293
294
295
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 3, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).size(),
                         torch.Size([1, 5, 3, 3]))

296
    def test_value_choice_as_parameter(self):
297
        @model_wrapper
298
299
300
301
302
303
304
305
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

306
        model, mutators = self._get_model_with_mutators(Net())
307
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
308
309
310
311
312
313
314
315
316
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

    def test_value_choice_as_parameter(self):
317
        @model_wrapper
318
319
320
321
322
323
324
325
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

326
        model, mutators = self._get_model_with_mutators(Net())
327
328
329
330
        self.assertEqual(len(mutators), self.value_choice_incr + 1)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
331
332
333
334
335
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))

336
    def test_value_choice_as_two_parameters(self):
337
        @model_wrapper
338
339
340
341
342
343
344
345
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, nn.ValueChoice([6, 8]), kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

346
        model, mutators = self._get_model_with_mutators(Net())
347
348
349
350
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
351
        input = torch.randn(1, 3, 5, 5)
352
        self.assertEqual(self._get_converted_pytorch_model(model1)(input).size(),
353
                         torch.Size([1, 6, 3, 3]))
354
        self.assertEqual(self._get_converted_pytorch_model(model2)(input).size(),
355
356
357
                         torch.Size([1, 8, 1, 1]))

    def test_value_choice_as_parameter_shared(self):
358
        @model_wrapper
359
360
361
362
363
364
365
366
367
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([6, 8], label='shared'), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

368
        model, mutators = self._get_model_with_mutators(Net())
369
370
371
372
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
373
374
375
376
377
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 6, 5, 5]))
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 8, 5, 5]))

378
    def test_value_choice_in_functional(self):
379
        @model_wrapper
380
381
382
383
384
385
386
387
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.dropout_rate = nn.ValueChoice([0., 1.])

            def forward(self, x):
                return F.dropout(x, self.dropout_rate())

388
        model, mutators = self._get_model_with_mutators(Net())
389
        self.assertEqual(len(mutators), 1)
390
        mutator = mutators[0].bind_sampler(EnumerateSampler())
391
392
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
393
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
394
395
396
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

397
    def test_value_choice_in_layer_choice(self):
398
        @model_wrapper
399
400
401
402
403
404
405
406
407
408
409
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.linear = nn.LayerChoice([
                    nn.Linear(3, nn.ValueChoice([10, 20])),
                    nn.Linear(3, nn.ValueChoice([30, 40]))
                ])

            def forward(self, x):
                return self.linear(x)

410
        model, mutators = self._get_model_with_mutators(Net())
411
        self.assertEqual(len(mutators), 3 + self.value_choice_incr)
412
413
414
        sz_counter = Counter()
        sampler = RandomSampler()
        for i in range(100):
415
            model_new = _apply_all_mutators(model, mutators, sampler)
416
417
418
            sz_counter[self._get_converted_pytorch_model(model_new)(torch.randn(1, 3)).size(1)] += 1
        self.assertEqual(len(sz_counter), 4)

419
    def test_shared(self):
420
        @model_wrapper
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
        class Net(nn.Module):
            def __init__(self, shared=True):
                super().__init__()
                labels = ['x', 'x'] if shared else [None, None]
                self.module1 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[0])
                self.module2 = nn.LayerChoice([
                    nn.Conv2d(3, 3, kernel_size=1),
                    nn.Conv2d(3, 5, kernel_size=1)
                ], label=labels[1])

            def forward(self, x):
                return self.module1(x) + self.module2(x)

437
        model, mutators = self._get_model_with_mutators(Net())
438
439
440
441
442
443
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        mutator = mutators[0].bind_sampler(sampler)
        self.assertEqual(self._get_converted_pytorch_model(mutator.apply(model))(torch.randn(1, 3, 3, 3)).size(0), 1)
        self.assertEqual(sampler.counter, 1)

444
        model, mutators = self._get_model_with_mutators(Net(shared=False))
445
446
447
448
449
        self.assertEqual(len(mutators), 2)
        sampler = RandomSampler()
        # repeat test. Expectation: sometimes succeeds, sometimes fails.
        failed_count = 0
        for i in range(30):
450
            model_new = model
451
            for mutator in mutators:
452
                model_new = mutator.bind_sampler(sampler).apply(model_new)
453
454
            self.assertEqual(sampler.counter, 2 * (i + 1))
            try:
455
                self._get_converted_pytorch_model(model_new)(torch.randn(1, 3, 3, 3))
456
457
458
459
            except RuntimeError:
                failed_count += 1
        self.assertGreater(failed_count, 0)
        self.assertLess(failed_count, 30)
460

461
    def test_valuechoice_getitem(self):
462
        @model_wrapper
463
464
465
466
467
468
469
470
471
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                vc = nn.ValueChoice([(6, 3), (8, 5)])
                self.conv = nn.Conv2d(3, vc[0], kernel_size=vc[1])

            def forward(self, x):
                return self.conv(x)

472
        model, mutators = self._get_model_with_mutators(Net())
473
474
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
        sampler = EnumerateSampler()
475
        input = torch.randn(1, 3, 5, 5)
476
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
477
                         torch.Size([1, 6, 3, 3]))
478
        self.assertEqual(self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, sampler))(input).size(),
479
480
                         torch.Size([1, 8, 1, 1]))

481
        @model_wrapper
482
483
484
485
486
487
488
489
490
491
492
493
494
495
        class Net2(nn.Module):
            def __init__(self):
                super().__init__()
                choices = [
                    {'b': [3], 'bp': [6]},
                    {'b': [6], 'bp': [12]}
                ]
                self.conv = nn.Conv2d(3, nn.ValueChoice(choices, label='a')['b'][0], 1)
                self.conv1 = nn.Conv2d(nn.ValueChoice(choices, label='a')['bp'][0], 3, 1)

            def forward(self, x):
                x = self.conv(x)
                return self.conv1(torch.cat((x, x), 1))

496
        model, mutators = self._get_model_with_mutators(Net2())
497
        self.assertEqual(len(mutators), 1 + self.value_choice_incr)
498
        input = torch.randn(1, 3, 5, 5)
499
        self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, EnumerateSampler()))(input)
500

501
    def test_valuechoice_getitem_functional(self):
502
        @model_wrapper
503
504
505
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
506
                self.dropout_rate = nn.ValueChoice([[0., ], [1., ]])
507
508
509
510

            def forward(self, x):
                return F.dropout(x, self.dropout_rate()[0])

511
        model, mutators = self._get_model_with_mutators(Net())
512
513
514
515
516
517
518
519
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)

520
    def test_valuechoice_getitem_functional_expression(self):
521
        @model_wrapper
522
523
524
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
525
                self.dropout_rate = nn.ValueChoice([[1.05, ], [1.1, ]])
526
527
528
529
530
531

            def forward(self, x):
                # if expression failed, the exception would be:
                # ValueError: dropout probability has to be between 0 and 1, but got 1.05
                return F.dropout(x, self.dropout_rate()[0] - .1)

532
        model, mutators = self._get_model_with_mutators(Net())
533
534
535
536
537
538
539
        self.assertEqual(len(mutators), 1)
        mutator = mutators[0].bind_sampler(EnumerateSampler())
        model1 = mutator.apply(model)
        model2 = mutator.apply(model)
        self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3))
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 3, 3)).size(), torch.Size([1, 3, 3, 3]))
        self.assertAlmostEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 3, 3)).abs().sum().item(), 0)
540

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
    def test_valuechoice_multi(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                choice1 = nn.ValueChoice([{"in": 1, "out": 3}, {"in": 2, "out": 6}, {"in": 3, "out": 9}])
                choice2 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                choice3 = nn.ValueChoice([2.5, 3.0, 3.5], label='multi')
                self.conv1 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice2), 1)
                self.conv2 = nn.Conv2d(choice1["in"], round(choice1["out"] * choice3), 1)

            def forward(self, x):
                return self.conv1(x) + self.conv2(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 2 + self.value_choice_incr)
        samplers = [EnumerateSampler()] + [RandomSampler() for _ in range(self.value_choice_incr + 1)]

        for i in range(10):
            model_new = _apply_all_mutators(model, mutators, samplers)
            result = self._get_converted_pytorch_model(model_new)(torch.randn(1, i % 3 + 1, 3, 3))
            self.assertIn(result.size(), [torch.Size([1, round((i % 3 + 1) * 3 * k), 3, 3]) for k in [2.5, 3.0, 3.5]])

    def test_valuechoice_inconsistent_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv1 = nn.Conv2d(3, nn.ValueChoice([3, 5], label='a'), 1)
                self.conv2 = nn.Conv2d(3, nn.ValueChoice([3, 6], label='a'), 1)

            def forward(self, x):
                return torch.cat([self.conv1(x), self.conv2(x)], 1)

        with pytest.raises(AssertionError):
            self._get_model_with_mutators(Net())

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
    def test_valuechoice_hybrid_arch_hparams(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5]))

            def forward(self, x):
                return self.conv(x)

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        model, mutators = preprocess_model(Net(), evaluator, [], full_ir=self.graph_engine)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        model1 = _apply_all_mutators(model, mutators, samplers)
        model2 = _apply_all_mutators(model, mutators, samplers)
        self.assertEqual(self._get_converted_pytorch_model(model1)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 3, 3]))
        self.assertEqual(model1.evaluator.trace_kwargs['x'], 1)
        self.assertEqual(self._get_converted_pytorch_model(model2)(torch.randn(1, 3, 5, 5)).size(),
                         torch.Size([1, 5, 1, 1]))
        self.assertEqual(model2.evaluator.trace_kwargs['y'], 4)

    def test_valuechoice_hybrid_arch_hparams_conflict_label(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.conv = nn.Conv2d(3, 5, kernel_size=nn.ValueChoice([3, 5], label='123'))

            def forward(self, x):
                return self.conv(x)

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([3, 5], label='123'))
        with pytest.raises(ValueError, match='share'):
            preprocess_model(Net(), evaluator, [], full_ir=self.graph_engine)

620
621
622
623
624
    def test_repeat(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

625
        @model_wrapper
626
627
628
629
630
631
632
633
634
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (3, 5))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [3, 4, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

    def test_repeat_static(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), 4)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 4)
        sampler = RandomSampler()

        result = []
        for _ in range(50):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        for x in [1, 2, 3]:
            self.assertIn(float(x), result)
668

Yuge Zhang's avatar
Yuge Zhang committed
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
    def test_repeat_complex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(nn.LayerChoice([AddOne(), nn.Identity()], label='lc'), (3, 5), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
684
685
        self.assertEqual(len(mutators), 2 + self.repeat_incr + self.value_choice_incr)
        self.assertEqual(set([mutator.label for mutator in mutators if mutator.label is not None]), {'lc', 'rep'})
Yuge Zhang's avatar
Yuge Zhang committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

        sampler = RandomSampler()
        for _ in range(10):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result = self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item()
            self.assertIn(result, [0., 3., 4., 5.])

        # independent layer choice
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(lambda index: nn.LayerChoice([AddOne(), nn.Identity()]), (2, 3), label='rep')

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
706
        self.assertEqual(len(mutators), 4 + self.repeat_incr + self.value_choice_incr)
Yuge Zhang's avatar
Yuge Zhang committed
707
708
709
710
711
712
713
714
715
716

        result = []
        for _ in range(20):
            new_model = model
            for mutator in mutators:
                new_model = mutator.bind_sampler(sampler).apply(new_model)
            result.append(self._get_converted_pytorch_model(new_model)(torch.zeros(1, 1)).item())

        self.assertIn(1., result)

717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    def test_repeat_valuechoice(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([1, 3, 5]))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
    def test_repeat_valuechoicex(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), nn.ValueChoice([0, 2, 4]) + 1)

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [1, 3, 5]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

759
760
761
762
763
764
765
766
767
768
769
770
    def test_repeat_weight_inheritance(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.module = nn.Repeat(lambda index: nn.Conv2d(3, 3, 1), (2, 5))

            def forward(self, x):
                return self.module(x)

        orig_model = Net()
        model, mutators = self._get_model_with_mutators(orig_model)
771
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
772
773
774
        inp = torch.randn(1, 3, 5, 5)

        for i in range(4):
775
            model_new = self._get_converted_pytorch_model(_apply_all_mutators(model, mutators, samplers))
776
777
778
779
780
781
782
            with original_state_dict_hooks(model_new):
                model_new.load_state_dict(orig_model.state_dict(), strict=False)

            a = nn.Sequential(*orig_model.module.blocks[:i + 2])(inp)
            b = model_new(inp)
            self.assertLess((a - b).abs().max().item(), 1E-4)

Yuge Zhang's avatar
Yuge Zhang committed
783
    def test_nasbench201_cell(self):
784
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench201Cell([
                    lambda x, y: nn.Linear(x, y),
                    lambda x, y: nn.Linear(x, y, bias=False)
                ], 10, 16)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))

804
    def test_autoactivation(self):
805
        @model_wrapper
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.act = nn.AutoActivation()

            def forward(self, x):
                return self.act(x)

        raw_model, mutators = self._get_model_with_mutators(Net())
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 10]))

822
823

class Python(GraphIR):
824
825
    # Python engine doesn't have the extra mutator
    value_choice_incr = 0
826
    repeat_incr = 0
827
    graph_engine = False
828

829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    def _get_converted_pytorch_model(self, model_ir):
        mutation = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model_ir.history}
        with ContextStack('fixed', mutation):
            model = model_ir.python_class(**model_ir.python_init_params)
            return model

    def _get_model_with_mutators(self, pytorch_model):
        return extract_mutation_from_pt_module(pytorch_model)

    @unittest.skip
    def test_value_choice(self): ...

    @unittest.skip
    def test_value_choice_in_functional(self): ...

    @unittest.skip
845
    def test_valuechoice_getitem_functional(self): ...
846
847

    @unittest.skip
848
    def test_valuechoice_getitem_functional_expression(self): ...
Yuge Zhang's avatar
Yuge Zhang committed
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
    def test_repeat_zero(self):
        class AddOne(nn.Module):
            def forward(self, x):
                return x + 1

        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.block = nn.Repeat(AddOne(), (0, 3))

            def forward(self, x):
                return self.block(x)

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1 + self.repeat_incr + self.value_choice_incr)
        samplers = [EnumerateSampler() for _ in range(len(mutators))]
        for target in [0, 1, 2, 3]:
            new_model = _apply_all_mutators(model, mutators, samplers)
            self.assertTrue((self._get_converted_pytorch_model(new_model)(torch.zeros(1, 16)) == target).all())

871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
    def test_hyperparameter_choice(self):
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = nn.ModelParameterChoice([False, True])

            def forward(self, x):
                return x

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = EnumerateSampler()
        model1 = _apply_all_mutators(model, mutators, sampler)
        model2 = _apply_all_mutators(model, mutators, sampler)
        self.assertEqual(self._get_converted_pytorch_model(model1).aux, False)
        self.assertEqual(self._get_converted_pytorch_model(model2).aux, True)

    def test_hyperparameter_choice_parameter(self):
        class Inner(nn.Module):
            def __init__(self):
                super().__init__()
                self.aux = torch.nn.Parameter(
                    torch.zeros(1, nn.ModelParameterChoice([64, 128, 256], label='a'), 3, 3)
                )

            def forward(self):
                return self.aux
        @model_wrapper
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')
                self.inner = Inner()

            def forward(self):
                param = self.inner()
                assert param.size(1) == self.choice
                return param

        model, mutators = self._get_model_with_mutators(Net())
        self.assertEqual(len(mutators), 1)
        sampler = RandomSampler()
        result_pool = set()
        for _ in range(20):
            model = _apply_all_mutators(model, mutators, sampler)
            result = self._get_converted_pytorch_model(model)()
            result_pool.add(result.size(1))
        self.assertSetEqual(result_pool, {64, 128, 256})

    def test_hyperparameter_choice_no_model_wrapper(self):
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.choice = nn.ModelParameterChoice([64, 128, 256], label='a')

        with self.assertRaises(NoContextError):
            model = Net()

930
    def test_cell(self):
931
        raw_model, mutators = self._get_model_with_mutators(CellSimple())
932
933
934
935
936
937
938
939
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 64]))

940
        raw_model, mutators = self._get_model_with_mutators(CellDefaultArgs())
941
942
943
944
945
946
947
948
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(1, 16)).size() == torch.Size([1, 64]))

    def test_cell_predecessors(self):
949
        raw_model, mutators = self._get_model_with_mutators(CellCustomProcessor())
950
951
952
953
954
955
956
957
958
959
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            result = self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16))
            self.assertTrue(result[0].size() == torch.Size([1, 16]))
            self.assertTrue(result[1].size() == torch.Size([1, 64]))

960
    def test_cell_loose_end(self):
961
        raw_model, mutators = self._get_model_with_mutators(CellLooseEnd())
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
        any_not_all = False
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            model = self._get_converted_pytorch_model(model)
            indices = model.cell.output_node_indices
            assert all(i > 2 for i in indices)
            self.assertTrue(model(torch.randn(1, 16), torch.randn(1, 16)).size() == torch.Size([1, 16 * len(indices)]))
            if len(indices) < 4:
                any_not_all = True
        self.assertTrue(any_not_all)

    def test_cell_complex(self):
977
        raw_model, mutators = self._get_model_with_mutators(CellOpFactory())
978
979
980
981
982
983
984
985
        for _ in range(10):
            sampler = EnumerateSampler()
            model = raw_model
            for mutator in mutators:
                model = mutator.bind_sampler(sampler).apply(model)
            self.assertTrue(self._get_converted_pytorch_model(model)(
                torch.randn(1, 3), torch.randn(1, 16)).size() == torch.Size([1, 64]))

Yuge Zhang's avatar
Yuge Zhang committed
986
987
    def test_nasbench101_cell(self):
        # this is only supported in python engine for now.
988
        @model_wrapper
Yuge Zhang's avatar
Yuge Zhang committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        class Net(nn.Module):
            def __init__(self):
                super().__init__()
                self.cell = nn.NasBench101Cell([lambda x: nn.Linear(x, x), lambda x: nn.Linear(x, x, bias=False)],
                                               10, 16, lambda x, y: nn.Linear(x, y), max_num_nodes=5, max_num_edges=7)

            def forward(self, x):
                return self.cell(x)

        raw_model, mutators = self._get_model_with_mutators(Net())

        succeeded = 0
        sampler = RandomSampler()
        while succeeded <= 10:
            try:
                model = raw_model
                for mutator in mutators:
                    model = mutator.bind_sampler(sampler).apply(model)
                succeeded += 1
            except InvalidMutation:
                continue
            self.assertTrue(self._get_converted_pytorch_model(model)(torch.randn(2, 10)).size() == torch.Size([2, 16]))
1011
1012
1013
1014
1015


class Shared(unittest.TestCase):
    # This kind of tests are general across execution engines

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    def test_value_choice_api_purely(self):
        a = nn.ValueChoice([1, 2], label='a')
        b = nn.ValueChoice([3, 4], label='b')
        c = nn.ValueChoice([5, 6], label='c')
        d = a + b + 3 * c
        for i, choice in enumerate(d.inner_choices()):
            if i == 0:
                assert choice.candidates == [1, 2]
            elif i == 1:
                assert choice.candidates == [3, 4]
            elif i == 2:
                assert choice.candidates == [5, 6]
        assert d.evaluate([2, 3, 5]) == 20
1029
1030
        expect = [x + y + 3 * z for x in [1, 2] for y in [3, 4] for z in [5, 6]]
        assert list(d.all_options()) == expect
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106

        a = nn.ValueChoice(['cat', 'dog'])
        b = nn.ValueChoice(['milk', 'coffee'])
        assert (a + b).evaluate(['dog', 'coffee']) == 'dogcoffee'
        assert (a + 2 * b).evaluate(['cat', 'milk']) == 'catmilkmilk'

        assert (3 - nn.ValueChoice([1, 2])).evaluate([1]) == 2

        with pytest.raises(TypeError):
            a + nn.ValueChoice([1, 3])

        a = nn.ValueChoice([1, 17])
        a = (abs(-a * 3) % 11) ** 5
        assert 'abs' in repr(a)
        with pytest.raises(ValueError):
            a.evaluate([42])
        assert a.evaluate([17]) == 7 ** 5

        a = round(7 / nn.ValueChoice([2, 5]))
        assert a.evaluate([2]) == 4

        a = ~(77 ^ (nn.ValueChoice([1, 4]) & 5))
        assert a.evaluate([4]) == ~(77 ^ (4 & 5))

        a = nn.ValueChoice([5, 3]) * nn.ValueChoice([6.5, 7.5])
        assert math.floor(a.evaluate([5, 7.5])) == int(5 * 7.5)

        a = nn.ValueChoice([1, 3])
        b = nn.ValueChoice([2, 4])
        with pytest.raises(RuntimeError):
            min(a, b)
        with pytest.raises(RuntimeError):
            if a < b:
                ...

        assert nn.ValueChoice.min(a, b).evaluate([3, 2]) == 2
        assert nn.ValueChoice.max(a, b).evaluate([3, 2]) == 3
        assert nn.ValueChoice.max(1, 2, 3) == 3
        assert nn.ValueChoice.max([1, 3, 2]) == 3

        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([3]) == 'b'
        assert nn.ValueChoice.condition(nn.ValueChoice([2, 3]) <= 2, 'a', 'b').evaluate([2]) == 'a'

        with pytest.raises(RuntimeError):
            assert int(nn.ValueChoice([2.5, 3.5])).evalute([2.5]) == 2

        assert nn.ValueChoice.to_int(nn.ValueChoice([2.5, 3.5])).evaluate([2.5]) == 2
        assert nn.ValueChoice.to_float(nn.ValueChoice(['2.5', '3.5'])).evaluate(['3.5']) == 3.5

    def test_make_divisible(self):
        def make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = nn.ValueChoice.max(min_value, nn.ValueChoice.to_int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            return nn.ValueChoice.condition(new_value < min_ratio * value, new_value + divisor, new_value)

        def original_make_divisible(value, divisor, min_value=None, min_ratio=0.9):
            if min_value is None:
                min_value = divisor
            new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
            # Make sure that round down does not go down by more than (1-min_ratio).
            if new_value < min_ratio * value:
                new_value += divisor
            return new_value

        values = [4, 8, 16, 32, 64, 128]
        divisors = [2, 3, 5, 7, 15]
        with pytest.raises(RuntimeError):
            original_make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        result = make_divisible(nn.ValueChoice(values, label='value'), nn.ValueChoice(divisors, label='divisor'))
        for value in values:
            for divisor in divisors:
                lst = [value if choice.label == 'value' else divisor for choice in result.inner_choices()]
                assert result.evaluate(lst) == original_make_divisible(value, divisor)

1107
1108
1109
        assert len(list(result.all_options())) == 30
        assert max(result.all_options()) == 135

1110
1111
1112
1113
1114
1115
1116
1117
1118
    def test_valuechoice_in_evaluator(self):
        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=1, x=2)
        assert process_evaluator_mutations(evaluator, []) == []

        evaluator = FunctionalEvaluator(foo, t=1, x=ValueChoice([1, 2]), y=ValueChoice([3, 4]))
        mutators = process_evaluator_mutations(evaluator, [])
1119
        assert len(mutators) == 3
1120
1121
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
1122
1123
        samplers = [EnumerateSampler() for _ in range(3)]
        model = _apply_all_mutators(init_model, mutators, samplers)
1124
        assert model.evaluator.trace_kwargs['x'] == 1
1125
        model = _apply_all_mutators(init_model, mutators, samplers)
1126
1127
1128
1129
1130
        assert model.evaluator.trace_kwargs['x'] == 2

        # share label
        evaluator = FunctionalEvaluator(foo, t=ValueChoice([1, 2], label='x'), x=ValueChoice([1, 2], label='x'))
        mutators = process_evaluator_mutations(evaluator, [])
1131
        assert len(mutators) == 2
1132
1133
1134
1135
1136

        # getitem
        choice = ValueChoice([{"a": 1, "b": 2}, {"a": 3, "b": 4}])
        evaluator = FunctionalEvaluator(foo, t=1, x=choice['a'], y=choice['b'])
        mutators = process_evaluator_mutations(evaluator, [])
1137
        assert len(mutators) == 2
1138
1139
1140
1141
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        sampler = RandomSampler()
        for _ in range(10):
1142
            model = _apply_all_mutators(init_model, mutators, sampler)
1143
            assert (model.evaluator.trace_kwargs['x'], model.evaluator.trace_kwargs['y']) in [(1, 2), (3, 4)]
1144

1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
    def test_valuechoice_in_evaluator_nested(self):
        @nni.trace
        class FooClass:
            def __init__(self, a):
                self.a = a

        obj = FooClass(ValueChoice([1, 2, 3], label='t'))

        def foo():
            pass

        evaluator = FunctionalEvaluator(foo, t=obj, v=ValueChoice([1, 2, 3], label='t') + ValueChoice([10, 20, 30]))
        mutators = process_evaluator_mutations(evaluator, [])
        assert len(mutators) == 3
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        samplers = [RandomSampler() for _ in range(3)]
        for _ in range(10):
            model = _apply_all_mutators(init_model, mutators, samplers)
1164
            a, v = model.evaluator.trace_kwargs['t'].a, model.evaluator.trace_kwargs['v']
1165
1166
1167
1168
            assert v % 10 == a
            assert a in [1, 2, 3]
            assert v // 10 in [1, 2, 3]

1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    @unittest.skipIf(pytorch_lightning.__version__ < '1.0', 'Legacy PyTorch-lightning not supported')
    def test_valuechoice_lightning(self):
        @nni.trace
        class AnyModule(pl.LightningModule):
            pass

        evaluator = pl.Lightning(AnyModule(), pl.Trainer(max_epochs=nn.ValueChoice([1, 2, 3])))
        mutators = process_evaluator_mutations(evaluator, [])
        assert len(mutators) == 2
        init_model = Model(_internal=True)
        init_model.evaluator = evaluator
        samplers = [RandomSampler() for _ in range(2)]
        values = []
        for _ in range(20):
            model = _apply_all_mutators(init_model, mutators, samplers)
            values.append(model.evaluator.trainer.max_epochs)
            model._dump()

        assert len(set(values)) == 3

1189
1190
1191
1192
1193
    @unittest.skipIf(pytorch_lightning.__version__ < '1.0', 'Legacy PyTorch-lightning not supported')
    def test_valuechoice_classification(self):
        evaluator = pl.Classification(criterion=nn.CrossEntropyLoss)
        process_evaluator_mutations(evaluator, [])

1194
1195
1196
1197
1198
1199
    def test_retiarii_nn_import(self):
        dummy = torch.zeros(1, 16, 32, 24)
        nn.init.uniform_(dummy)

        conv = nn.Conv2d(1, 3, 1)
        param = nn.Parameter(torch.zeros(1, 3, 24, 24))