test_space_hub.py 6.17 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""Currently, this is only a sanity-check (runnable) of spaces provided in hub."""

import random

from torchvision import transforms
from torchvision.datasets import FakeData

import pytest

import pytorch_lightning

import nni
import nni.runtime.platform.test
import nni.retiarii.evaluator.pytorch.lightning as pl
import nni.retiarii.hub.pytorch as searchspace
16
from nni.retiarii import fixed_arch
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from nni.retiarii.execution.utils import _unpack_if_only_one
from nni.retiarii.mutator import InvalidMutation, Sampler
from nni.retiarii.nn.pytorch.mutator import extract_mutation_from_pt_module


pytestmark = pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs.')


def _reset():
    # this is to not affect other tests in sdk
    nni.trial._intermediate_seq = 0
    nni.trial._params = {'foo': 'bar', 'parameter_id': 0}
    nni.runtime.platform.test._last_metric = None


class RandomSampler(Sampler):
    def __init__(self):
        self.counter = 0

    def choice(self, candidates, *args, **kwargs):
        self.counter += 1
        return random.choice(candidates)


def try_mutation_until_success(base_model, mutators, retry):
    if not retry:
        raise ValueError('Retry exhausted.')
    try:
        model = base_model
        for mutator in mutators:
            model = mutator.bind_sampler(RandomSampler()).apply(model)
        return model
    except InvalidMutation:
        return try_mutation_until_success(base_model, mutators, retry - 1)


def _test_searchspace_on_dataset(searchspace, dataset='cifar10', arch=None):
    _reset()

    # dataset supports cifar10 and imagenet
    model, mutators = extract_mutation_from_pt_module(searchspace)

    if arch is None:
        model = try_mutation_until_success(model, mutators, 10)
        arch = {mut.mutator.label: _unpack_if_only_one(mut.samples) for mut in model.history}

    print('Selected model:', arch)
64
    with fixed_arch(arch):
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        model = model.python_class(**model.python_init_params)

    if dataset == 'cifar10':
        train_data = FakeData(size=200, image_size=(3, 32, 32), num_classes=10, transform=transforms.ToTensor())
        valid_data = FakeData(size=200, image_size=(3, 32, 32), num_classes=10, transform=transforms.ToTensor())

    elif dataset == 'imagenet':
        train_data = FakeData(size=200, image_size=(3, 224, 224), num_classes=1000, transform=transforms.ToTensor())
        valid_data = FakeData(size=200, image_size=(3, 224, 224), num_classes=1000, transform=transforms.ToTensor())

    train_dataloader = pl.DataLoader(train_data, batch_size=4, shuffle=True)
    valid_dataloader = pl.DataLoader(valid_data, batch_size=6)

    evaluator = pl.Classification(
        train_dataloader=train_dataloader,
        val_dataloaders=valid_dataloader,
        export_onnx=False,
        max_epochs=1,
        limit_train_batches=2,
        limit_val_batches=3,
    )
    evaluator.fit(model)

    # cleanup to avoid affecting later test cases
    _reset()


def test_nasbench101():
    ss = searchspace.NasBench101()
    _test_searchspace_on_dataset(ss)


def test_nasbench201():
98
    ss = searchspace.NasBench201()
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    _test_searchspace_on_dataset(ss)


def test_nasnet():
    _test_searchspace_on_dataset(searchspace.NASNet())
    _test_searchspace_on_dataset(searchspace.ENAS())
    _test_searchspace_on_dataset(searchspace.AmoebaNet())
    _test_searchspace_on_dataset(searchspace.PNAS())
    _test_searchspace_on_dataset(searchspace.DARTS())


def test_nasnet_corner_case():
    # The case is that output channel of reduce cell and normal cell are different
    # CellPreprocessor needs to know whether its predecessors are normal cell / reduction cell
    arch = {
        "width": 32,
        "depth": 8,
        "normal/op_2_0": "max_pool_7x7",
        "normal/op_2_1": "conv_1x1",
        "normal/op_3_0": "sep_conv_5x5",
        "normal/op_3_1": "max_pool_7x7",
        "normal/op_4_0": "sep_conv_5x5",
        "normal/op_4_1": "conv_1x1",
        "normal/op_5_0": "max_pool_3x3",
        "normal/op_5_1": "sep_conv_5x5",
        "normal/op_6_0": "max_pool_7x7",
        "normal/op_6_1": "sep_conv_5x5",
        "normal/input_2_0": 0,
        "normal/input_2_1": 0,
        "normal/input_3_0": 0,
        "normal/input_3_1": 1,
        "normal/input_4_0": 1,
        "normal/input_4_1": 2,
        "normal/input_5_0": 0,
        "normal/input_5_1": 1,
        "normal/input_6_0": 0,
        "normal/input_6_1": 2,
        "reduce/op_2_0": "dil_conv_3x3",
        "reduce/op_2_1": "max_pool_7x7",
        "reduce/op_3_0": "dil_conv_3x3",
        "reduce/op_3_1": "dil_conv_3x3",
        "reduce/op_4_0": "conv_7x1_1x7",
        "reduce/op_4_1": "conv_7x1_1x7",
        "reduce/op_5_0": "max_pool_3x3",
        "reduce/op_5_1": "conv_1x1",
        "reduce/op_6_0": "sep_conv_7x7",
        "reduce/op_6_1": "sep_conv_3x3",
        "reduce/input_2_0": 1,
        "reduce/input_2_1": 1,
        "reduce/input_3_0": 0,
        "reduce/input_3_1": 1,
        "reduce/input_4_0": 2,
        "reduce/input_4_1": 1,
        "reduce/input_5_0": 0,
        "reduce/input_5_1": 4,
        "reduce/input_6_0": 3,
        "reduce/input_6_1": 3,
    }

    _test_searchspace_on_dataset(searchspace.NASNet(), arch=arch)


def test_nasnet_fixwd():
    # minimum
    ss = searchspace.DARTS(width=16, num_cells=4)
    _test_searchspace_on_dataset(ss)

    # medium
    ss = searchspace.NASNet(width=16, num_cells=12)
    _test_searchspace_on_dataset(ss)


def test_nasnet_imagenet():
    ss = searchspace.ENAS(dataset='imagenet')
    _test_searchspace_on_dataset(ss, dataset='imagenet')

    ss = searchspace.PNAS(dataset='imagenet')
    _test_searchspace_on_dataset(ss, dataset='imagenet')


def test_proxylessnas():
    ss = searchspace.ProxylessNAS()
    _test_searchspace_on_dataset(ss, dataset='imagenet')


def test_mobilenetv3():
    ss = searchspace.MobileNetV3Space()
    _test_searchspace_on_dataset(ss, dataset='imagenet')


def test_shufflenet():
    ss = searchspace.ShuffleNetSpace()
    _test_searchspace_on_dataset(ss, dataset='imagenet')

    ss = searchspace.ShuffleNetSpace(channel_search=True)
    _test_searchspace_on_dataset(ss, dataset='imagenet')
nbl97's avatar
nbl97 committed
195
196
197
198

def test_autoformer():
    ss = searchspace.AutoformerSpace()
    _test_searchspace_on_dataset(ss, dataset='imagenet')