test_oneshot.py 11.5 KB
Newer Older
1
2
3
4
5
6
7
import argparse
import torch
import torch.nn.functional as F
import pytorch_lightning as pl
import pytest
from torchvision import transforms
from torchvision.datasets import MNIST
8
from torch.utils.data import Dataset, RandomSampler
9

10
import nni
11
12
import nni.retiarii.nn.pytorch as nn
from nni.retiarii import strategy, model_wrapper, basic_unit
13
from nni.retiarii.experiment.pytorch import RetiariiExeConfig, RetiariiExperiment
14
15
from nni.retiarii.evaluator.pytorch.lightning import Classification, Regression, DataLoader
from nni.retiarii.nn.pytorch import LayerChoice, InputChoice, ValueChoice
Yuge Zhang's avatar
Yuge Zhang committed
16
from nni.retiarii.strategy import BaseStrategy
17
18


19
20
21
pytestmark = pytest.mark.skipif(pl.__version__ < '1.0', reason='Incompatible APIs')


22
23
24
25
26
27
28
29
30
31
class DepthwiseSeparableConv(nn.Module):
    def __init__(self, in_ch, out_ch):
        super().__init__()
        self.depthwise = nn.Conv2d(in_ch, in_ch, kernel_size=3, groups=in_ch)
        self.pointwise = nn.Conv2d(in_ch, out_ch, kernel_size=1)

    def forward(self, x):
        return self.pointwise(self.depthwise(x))


32
@model_wrapper
33
34
class SimpleNet(nn.Module):
    def __init__(self, value_choice=True):
35
36
37
38
39
40
        super().__init__()
        self.conv1 = nn.Conv2d(1, 32, 3, 1)
        self.conv2 = LayerChoice([
            nn.Conv2d(32, 64, 3, 1),
            DepthwiseSeparableConv(32, 64)
        ])
41
42
43
44
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
45
        ])
46
47
48
49
50
51
52
        self.dropout2 = nn.Dropout(0.5)
        if value_choice:
            hidden = nn.ValueChoice([32, 64, 128])
        else:
            hidden = 64
        self.fc1 = nn.Linear(9216, hidden)
        self.fc2 = nn.Linear(hidden, 10)
53
        self.rpfc = nn.Linear(10, 10)
54
        self.input_ch = InputChoice(2, 1)
55
56
57
58

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(self.conv2(x), 2)
59
60
61
62
63
64
65
        x = torch.flatten(self.dropout1(x), 1)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.dropout2(x)
        x = self.fc2(x)
        x1 = self.rpfc(x)
        x = self.input_ch([x, x1])
66
67
68
69
        output = F.log_softmax(x, dim=1)
        return output


70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
@model_wrapper
class MultiHeadAttentionNet(nn.Module):
    def __init__(self, head_count):
        super().__init__()
        embed_dim = ValueChoice(candidates=[32, 64])
        self.linear1 = nn.Linear(128, embed_dim)
        self.mhatt = nn.MultiheadAttention(embed_dim, head_count)
        self.linear2 = nn.Linear(embed_dim, 1)

    def forward(self, batch):
        query, key, value = batch
        q, k, v = self.linear1(query), self.linear1(key), self.linear1(value)
        output, _ = self.mhatt(q, k, v, need_weights=False)
        y = self.linear2(output)
        return F.relu(y)


@model_wrapper
class ValueChoiceConvNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


@model_wrapper
class RepeatNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = nn.BatchNorm2d(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)
        self.rpfc = nn.Repeat(nn.Linear(10, 10), (1, 4))

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        x = self.rpfc(x)
        return F.log_softmax(x, dim=1)


141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
@model_wrapper
class CellNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.stem = nn.Conv2d(1, 5, 7, stride=4)
        self.cells = nn.Repeat(
            lambda index: nn.Cell({
                'conv1': lambda _, __, inp: nn.Conv2d(
                    (5 if index == 0 else 3 * 4) if inp is not None and inp < 1 else 4, 4, 1
                ),
                'conv2': lambda _, __, inp: nn.Conv2d(
                    (5 if index == 0 else 3 * 4) if inp is not None and inp < 1 else 4, 4, 3, padding=1
                ),
            }, 3, merge_op='loose_end'), (1, 3)
        )
        self.fc = nn.Linear(3 * 4, 10)

    def forward(self, x):
        x = self.stem(x)
        x = self.cells(x)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
@basic_unit
class MyOp(nn.Module):
    def __init__(self, some_ch):
        super().__init__()
        self.some_ch = some_ch
        self.batch_norm = nn.BatchNorm2d(some_ch)

    def forward(self, x):
        return self.batch_norm(x)


@model_wrapper
class CustomOpValueChoiceNet(nn.Module):
    def __init__(self):
        super().__init__()
        ch1 = ValueChoice([16, 32])
        kernel = ValueChoice([3, 5])
        self.conv1 = nn.Conv2d(1, ch1, kernel, padding=kernel // 2)
        self.batch_norm = MyOp(ch1)
        self.conv2 = nn.Conv2d(ch1, 64, 3, padding=1)
        self.dropout1 = LayerChoice([
            nn.Dropout(.25),
            nn.Dropout(.5),
            nn.Dropout(.75)
        ])
        self.fc = nn.Linear(64, 10)

    def forward(self, x):
        x = self.conv1(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        x = F.max_pool2d(self.conv2(x), 2)
        x = torch.mean(x, (2, 3))
        x = self.fc(x)
        return F.log_softmax(x, dim=1)


203
def _mnist_net(type_, evaluator_kwargs):
204
205
206
207
208
209
210
211
    if type_ == 'simple':
        base_model = SimpleNet(False)
    elif type_ == 'simple_value_choice':
        base_model = SimpleNet()
    elif type_ == 'value_choice':
        base_model = ValueChoiceConvNet()
    elif type_ == 'repeat':
        base_model = RepeatNet()
212
213
    elif type_ == 'cell':
        base_model = CellNet()
214
215
216
217
    elif type_ == 'custom_op':
        base_model = CustomOpValueChoiceNet()
    else:
        raise ValueError(f'Unsupported type: {type_}')
218

219
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
Yuge Zhang's avatar
Yuge Zhang committed
220
    train_dataset = nni.trace(MNIST)('data/mnist', download=True, train=True, transform=transform)
221
    # Multi-GPU combined dataloader will break this subset sampler. Expected though.
222
223
    train_random_sampler = nni.trace(RandomSampler)(train_dataset, True, int(len(train_dataset) / 20))
    train_loader = nni.trace(DataLoader)(train_dataset, 64, sampler=train_random_sampler)
Yuge Zhang's avatar
Yuge Zhang committed
224
    valid_dataset = nni.trace(MNIST)('data/mnist', download=True, train=False, transform=transform)
225
226
    valid_random_sampler = nni.trace(RandomSampler)(valid_dataset, True, int(len(valid_dataset) / 20))
    valid_loader = nni.trace(DataLoader)(valid_dataset, 64, sampler=valid_random_sampler)
227
    evaluator = Classification(train_dataloader=train_loader, val_dataloaders=valid_loader, **evaluator_kwargs)
228
229
230
231

    return base_model, evaluator


232
def _multihead_attention_net(evaluator_kwargs):
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
    base_model = MultiHeadAttentionNet(1)

    class AttentionRandDataset(Dataset):
        def __init__(self, data_shape, gt_shape, len) -> None:
            super().__init__()
            self.datashape = data_shape
            self.gtshape = gt_shape
            self.len = len

        def __getitem__(self, index):
            q = torch.rand(self.datashape)
            k = torch.rand(self.datashape)
            v = torch.rand(self.datashape)
            gt = torch.rand(self.gtshape)
            return (q, k, v), gt

        def __len__(self):
            return self.len
251

252
253
254
255
    train_set = AttentionRandDataset((1, 128), (1, 1), 1000)
    val_set = AttentionRandDataset((1, 128), (1, 1), 500)
    train_loader = DataLoader(train_set, batch_size=32)
    val_loader = DataLoader(val_set, batch_size=32)
256

257
    evaluator = Regression(train_dataloader=train_loader, val_dataloaders=val_loader, **evaluator_kwargs)
258
    return base_model, evaluator
259
260


261
262
263
264
265
266
267
268
269
270
271
def _test_strategy(strategy_, support_value_choice=True, multi_gpu=False):
    evaluator_kwargs = {
        'max_epochs': 1
    }
    if multi_gpu:
        evaluator_kwargs.update(
            strategy='ddp',
            accelerator='gpu',
            devices=torch.cuda.device_count()
        )

272
273
    to_test = [
        # (model, evaluator), support_or_net
274
275
276
        (_mnist_net('simple', evaluator_kwargs), True),
        (_mnist_net('simple_value_choice', evaluator_kwargs), support_value_choice),
        (_mnist_net('value_choice', evaluator_kwargs), support_value_choice),
277
        (_mnist_net('repeat', evaluator_kwargs), support_value_choice),      # no strategy supports repeat currently
278
279
        (_mnist_net('custom_op', evaluator_kwargs), False),   # this is definitely a NO
        (_multihead_attention_net(evaluator_kwargs), support_value_choice),
280
    ]
281

282
    for (base_model, evaluator), support_or_not in to_test:
Yuge Zhang's avatar
Yuge Zhang committed
283
284
285
286
287
288
        if isinstance(strategy_, BaseStrategy):
            strategy = strategy_
        else:
            strategy = strategy_(base_model, evaluator)
        print('Testing:', type(strategy).__name__, type(base_model).__name__, type(evaluator).__name__, support_or_not)
        experiment = RetiariiExperiment(base_model, evaluator, strategy=strategy)
289

290
291
        config = RetiariiExeConfig()
        config.execution_engine = 'oneshot'
292

293
294
295
296
297
298
        if support_or_not:
            experiment.run(config)
            assert isinstance(experiment.export_top_models()[0], dict)
        else:
            with pytest.raises(TypeError, match='not supported'):
                experiment.run(config)
299
300


301
def test_darts():
302
    _test_strategy(strategy.DARTS())
303
304


305
306
307
308
309
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_darts_multi_gpu():
    _test_strategy(strategy.DARTS(), multi_gpu=True)


310
def test_proxyless():
311
    _test_strategy(strategy.Proxyless(), False)
312
313
314


def test_enas():
Yuge Zhang's avatar
Yuge Zhang committed
315
316
317
318
319
320
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn)
321
322


323
324
325
326
327
328
329
330
331
332
@pytest.mark.skipif(not torch.cuda.is_available() or torch.cuda.device_count() <= 1, reason='Must have multiple GPUs.')
def test_enas_multi_gpu():
    def strategy_fn(base_model, evaluator):
        if isinstance(base_model, MultiHeadAttentionNet):
            return strategy.ENAS(reward_metric_name='val_mse')
        return strategy.ENAS(reward_metric_name='val_acc')

    _test_strategy(strategy_fn, multi_gpu=True)


333
def test_random():
334
    _test_strategy(strategy.RandomOneShot())
335
336


337
338
def test_gumbel_darts():
    _test_strategy(strategy.GumbelDARTS())
339
340
341
342
343


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--exp', type=str, default='all', metavar='E',
344
                        help='experiment to run, default = all')
345
346
347
348
349
350
351
    args = parser.parse_args()

    if args.exp == 'all':
        test_darts()
        test_proxyless()
        test_enas()
        test_random()
352
        test_gumbel_darts()
353
354
    else:
        globals()[f'test_{args.exp}']()