test_lightning_trainer.py 5.18 KB
Newer Older
1
2
3
4
import json
import pytest

import nni
5
import nni.retiarii.evaluator.pytorch.lightning as pl
6
import nni.runtime.platform.test
7
8
9
10
import pytorch_lightning
import torch
import torch.nn as nn
import torch.nn.functional as F
11
from nni.retiarii.evaluator import FunctionalEvaluator
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from sklearn.datasets import load_diabetes
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.datasets import MNIST

debug = False

progress_bar_refresh_rate = 0
if debug:
    progress_bar_refresh_rate = 1


class MNISTModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.layer_1 = nn.Linear(28 * 28, 128)
        self.layer_2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(x.size(0), -1)
        x = self.layer_1(x)
        x = F.relu(x)
        x = self.layer_2(x)
        return x


class FCNet(nn.Module):
    def __init__(self, input_size, output_size):
        super().__init__()
        self.l1 = nn.Linear(input_size, 5)
        self.relu = nn.ReLU()
        self.l2 = nn.Linear(5, output_size)

    def forward(self, x):
        output = self.l1(x)
        output = self.relu(output)
        output = self.l2(output)
        return output.view(-1)


52
@nni.trace
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class DiabetesDataset(Dataset):
    def __init__(self, train=True):
        data = load_diabetes()
        self.x = torch.tensor(data['data'], dtype=torch.float32)
        self.y = torch.tensor(data['target'], dtype=torch.float32)
        self.length = self.x.shape[0]
        split = int(self.length * 0.8)
        if train:
            self.x = self.x[:split]
            self.y = self.y[:split]
        else:
            self.x = self.x[split:]
            self.y = self.y[split:]
        self.length = len(self.y)

    def __getitem__(self, idx):
        return self.x[idx], self.y[idx]

    def __len__(self):
        return self.length


def _get_final_result():
    return float(json.loads(nni.runtime.platform.test._last_metric)['value'])


def _foo(model_cls):
    assert model_cls == MNISTModel


def _reset():
    # this is to not affect other tests in sdk
    nni.trial._intermediate_seq = 0
    nni.trial._params = {'foo': 'bar', 'parameter_id': 0}
    nni.runtime.platform.test._last_metric = None


@pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs.')
def test_mnist():
    _reset()
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
94
95
    train_dataset = nni.trace(MNIST)(root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True, transform=transform)
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    lightning = pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                  val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                  max_epochs=2, limit_train_batches=0.25,  # for faster training
                                  progress_bar_refresh_rate=progress_bar_refresh_rate)
    lightning._execute(MNISTModel)
    assert _get_final_result() > 0.7
    _reset()


@pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs.')
def test_diabetes():
    _reset()
    nni.trial._params = {'foo': 'bar', 'parameter_id': 0}
    nni.runtime.platform.test._last_metric = None
    train_dataset = DiabetesDataset(train=True)
    test_dataset = DiabetesDataset(train=False)
    lightning = pl.Regression(optimizer=torch.optim.SGD,
                              train_dataloader=pl.DataLoader(train_dataset, batch_size=20),
                              val_dataloaders=pl.DataLoader(test_dataset, batch_size=20),
                              max_epochs=100,
                              progress_bar_refresh_rate=progress_bar_refresh_rate)
    lightning._execute(FCNet(train_dataset.x.shape[1], 1))
    assert _get_final_result() < 2e4
    _reset()


@pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs.')
def test_functional():
124
    FunctionalEvaluator(_foo)._execute(MNISTModel)
125
126


127
128
129
130
131
132
@pytest.mark.skipif(pytorch_lightning.__version__ < '1.0', reason='Incompatible APIs.')
def test_fit_api():
    _reset()
    transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_dataset = nni.trace(MNIST)(root='data/mnist', train=True, download=True, transform=transform)
    test_dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True, transform=transform)
Yuge Zhang's avatar
Yuge Zhang committed
133
134
135
136
137
138
139
140
141
142

    def lightning(): return pl.Classification(train_dataloader=pl.DataLoader(train_dataset, batch_size=100),
                                              val_dataloaders=pl.DataLoader(test_dataset, batch_size=100),
                                              max_epochs=1, limit_train_batches=0.1,  # for faster training
                                              progress_bar_refresh_rate=progress_bar_refresh_rate)
    # Lightning will have some cache in models / trainers,
    # which is problematic if we call fit multiple times.
    lightning().fit(lambda: MNISTModel())
    lightning().fit(MNISTModel)
    lightning().fit(MNISTModel())
143
144
145
    _reset()


146
147
148
149
if __name__ == '__main__':
    test_mnist()
    test_diabetes()
    test_functional()
150
    test_fit_api()