test_convert.py 23 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
"""
Reference: We use tested models from https://github.com/pytorch/pytorch/blob/master/test/jit/test_models.py.
"""

import os
import sys
import unittest

import numpy as np
import torch
import torch.nn.functional as F
import torchvision

import nni.retiarii.nn.pytorch as nn
15
from nni.retiarii import basic_unit
16
from nni.retiarii.codegen import model_to_pytorch_script
17
from nni.retiarii.utils import original_state_dict_hooks
18

19
20
from .convert_mixin import ConvertMixin, ConvertWithShapeMixin

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class MnistNet(nn.Module):
    def __init__(self):
        super(MnistNet, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
        self.conv2_drop = nn.Dropout2d()
        self.fc1 = nn.Linear(320, 50)
        self.fc2 = nn.Linear(50, 10)

    def forward(self, x):
        x = F.relu(F.max_pool2d(self.conv1(x), 2))
        x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
        x = x.view(-1, 320)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)

39
40
# NOTE: serialize module cannot be placed within class or function
@basic_unit
41
42
43
44
45
46
47
48
49
50
51
class Linear(nn.Module):
    def __init__(self, d_embed, d_proj):
        super().__init__()
        self.linear = nn.Linear(d_embed, d_proj)

    def forward(self, input):
        if len(input.size()) <= 2:
            return self.linear(input)
        size = input.size()[:2]
        out = self.linear(input.view(size[0] * size[1], -1))
        return out.view(size[0], size[1], -1)
52

53
class TestConvert(unittest.TestCase, ConvertMixin):
54
55

    def checkExportImport(self, model, input):
56
        model_ir = self._convert_model(model, input)
57
58
59
60
61
        model_code = model_to_pytorch_script(model_ir)

        exec_vars = {}
        exec(model_code + '\n\nconverted_model = _model()', exec_vars)
        converted_model = exec_vars['converted_model']
62
63
        with original_state_dict_hooks(converted_model):
            converted_model.load_state_dict(dict(model.state_dict()))
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        with torch.no_grad():
            expected_output = model.eval()(*input)
            converted_output = converted_model.eval()(*input)
        self.assertEqual(len(converted_output), len(expected_output))
        for a, b in zip(converted_output, expected_output):
            self.assertLess((a - b).abs().max().item(), 1E-4)
        return converted_model

    def test_dcgan_models(self):
        class DCGANGenerator(nn.Module):
            def __init__(self, nz, ngf, nc):
                super(DCGANGenerator, self).__init__()
                self.main = nn.Sequential(
                    # input is Z, going into a convolution
                    nn.ConvTranspose2d(nz, ngf * 8, 4, 1, 0, bias=False),
                    nn.BatchNorm2d(ngf * 8),
                    nn.ReLU(True),
                    # state size. (ngf*8) x 4 x 4
                    nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 4),
                    nn.ReLU(True),
                    # state size. (ngf*4) x 8 x 8
                    nn.ConvTranspose2d(ngf * 4, ngf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf * 2),
                    nn.ReLU(True),
                    # state size. (ngf*2) x 16 x 16
                    nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ngf),
                    nn.ReLU(True),
                    # state size. (ngf) x 32 x 32
                    nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
                    nn.Tanh()
                    # state size. (nc) x 64 x 64
                )

            def forward(self, input):
                return self.main(input)

        class DCGANDiscriminator(nn.Module):
            def __init__(self, nc, ndf):
                super(DCGANDiscriminator, self).__init__()
                self.main = nn.Sequential(
                    # input is (nc) x 64 x 64
                    nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf) x 32 x 32
                    nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 2),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*2) x 16 x 16
                    nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 4),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*4) x 8 x 8
                    nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
                    nn.BatchNorm2d(ndf * 8),
                    nn.LeakyReLU(0.2, inplace=True),
                    # state size. (ndf*8) x 4 x 4
                    nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
                    nn.Sigmoid()
                )

            def forward(self, input):
                return self.main(input).view(-1, 1).squeeze(1)

        bs, nz, ngf, nc, ndf = 5, 6, 9, 3, 10
        input = (torch.rand(bs, nz, 1, 1),)
        model = DCGANGenerator(nz, ngf, nc)
        self.checkExportImport(model, input)

    def test_neural_style(self):
135
        class TransformerNet(nn.Module):
136
137
138
139
            def __init__(self):
                super(TransformerNet, self).__init__()
                # Initial convolution layers
                self.conv1 = ConvLayer(3, 32, kernel_size=9, stride=1)
140
                self.in1 = nn.InstanceNorm2d(32, affine=True)
141
                self.conv2 = ConvLayer(32, 64, kernel_size=3, stride=2)
142
                self.in2 = nn.InstanceNorm2d(64, affine=True)
143
                self.conv3 = ConvLayer(64, 128, kernel_size=3, stride=2)
144
                self.in3 = nn.InstanceNorm2d(128, affine=True)
145
146
147
148
149
150
151
152
                # Residual layers
                self.res1 = ResidualBlock(128)
                self.res2 = ResidualBlock(128)
                self.res3 = ResidualBlock(128)
                self.res4 = ResidualBlock(128)
                self.res5 = ResidualBlock(128)
                # Upsampling Layers
                self.deconv1 = UpsampleConvLayer(128, 64, kernel_size=3, stride=1, upsample=2)
153
                self.in4 = nn.InstanceNorm2d(64, affine=True)
154
                self.deconv2 = UpsampleConvLayer(64, 32, kernel_size=3, stride=1, upsample=2)
155
                self.in5 = nn.InstanceNorm2d(32, affine=True)
156
157
                self.deconv3 = ConvLayer(32, 3, kernel_size=9, stride=1)
                # Non-linearities
158
                self.relu = nn.ReLU()
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

            def forward(self, X):
                y = self.relu(self.in1(self.conv1(X)))
                y = self.relu(self.in2(self.conv2(y)))
                y = self.relu(self.in3(self.conv3(y)))
                y = self.res1(y)
                y = self.res2(y)
                y = self.res3(y)
                y = self.res4(y)
                y = self.res5(y)
                y = self.relu(self.in4(self.deconv1(y)))
                y = self.relu(self.in5(self.deconv2(y)))
                y = self.deconv3(y)
                return y

174
        class ConvLayer(nn.Module):
175
176
177
            def __init__(self, in_channels, out_channels, kernel_size, stride):
                super(ConvLayer, self).__init__()
                reflection_padding = kernel_size // 2
178
179
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
180
181
182
183
184
185

            def forward(self, x):
                out = self.reflection_pad(x)
                out = self.conv2d(out)
                return out

186
        class ResidualBlock(nn.Module):
187
188
189
190
191
192
193
194
            """ResidualBlock
            introduced in: https://arxiv.org/abs/1512.03385
            recommended architecture: http://torch.ch/blog/2016/02/04/resnets.html
            """

            def __init__(self, channels):
                super(ResidualBlock, self).__init__()
                self.conv1 = ConvLayer(channels, channels, kernel_size=3, stride=1)
195
                self.in1 = nn.InstanceNorm2d(channels, affine=True)
196
                self.conv2 = ConvLayer(channels, channels, kernel_size=3, stride=1)
197
198
                self.in2 = nn.InstanceNorm2d(channels, affine=True)
                self.relu = nn.ReLU()
199
200
201
202
203
204
205
206

            def forward(self, x):
                residual = x
                out = self.relu(self.in1(self.conv1(x)))
                out = self.in2(self.conv2(out))
                out = out + residual
                return out

207
        class UpsampleConvLayer(nn.Module):
208
209
210
211
212
213
214
215
216
217
            """UpsampleConvLayer
            Upsamples the input and then does a convolution. This method gives better results
            compared to ConvTranspose2d.
            ref: http://distill.pub/2016/deconv-checkerboard/
            """

            def __init__(self, in_channels, out_channels, kernel_size, stride, upsample=None):
                super(UpsampleConvLayer, self).__init__()
                self.upsample = upsample
                if upsample:
218
                    self.upsample_layer = nn.Upsample(mode='nearest', scale_factor=upsample)
219
                reflection_padding = kernel_size // 2
220
221
                self.reflection_pad = nn.ReflectionPad2d(reflection_padding)
                self.conv2d = nn.Conv2d(in_channels, out_channels, kernel_size, stride)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258

            def forward(self, x):
                x_in = x
                if self.upsample:
                    x_in = self.upsample_layer(x_in)
                out = self.reflection_pad(x_in)
                out = self.conv2d(out)
                return out

        model = TransformerNet()
        input = (torch.rand(5, 3, 16, 16),)
        self.checkExportImport(model, input)

    def test_mnist(self):
        # eval() is present because dropout makes this nondeterministic
        self.checkExportImport(MnistNet().eval(), (torch.rand(5, 1, 28, 28),))

    def test_reinforcement_learning(self):
        class Policy(nn.Module):
            def __init__(self):
                super(Policy, self).__init__()
                self.affine1 = nn.Linear(4, 128)
                self.affine2 = nn.Linear(128, 2)

            def forward(self, x):
                x = F.relu(self.affine1(x))
                action_scores = self.affine2(x)
                return F.softmax(action_scores, dim=1)

        self.checkExportImport(Policy(), (torch.rand(1, 4),))

    def test_snli(self):

        class Encoder(nn.Module):

            def __init__(self, config):
                super(Encoder, self).__init__()
259
260
261
262
263
264
265
266
267
                #self.config = config
                input_size = config["d_proj"] if config["projection"] else config["d_embed"]
                dropout = 0 if config["n_layers"] == 1 else config["dp_ratio"]
                self.rnn = nn.LSTM(input_size=input_size, hidden_size=config["d_hidden"],
                                   num_layers=config["n_layers"], dropout=dropout,
                                   bidirectional=config["birnn"])
                self.n_cells = config["n_cells"]
                self.d_hidden = config["d_hidden"]
                self.birnn = config["birnn"]
268
269
270

            def forward(self, inputs):
                batch_size = inputs.size()[1]
271
                state_shape = self.n_cells, batch_size, self.d_hidden
272
273
                h0 = c0 = inputs.new_zeros(state_shape)
                outputs, (ht, ct) = self.rnn(inputs, (h0, c0))
274
                return ht[-1] if not self.birnn else ht[-2:].transpose(0, 1).contiguous().view(batch_size, -1)
275
276
277
278
279

        class SNLIClassifier(nn.Module):

            def __init__(self, config):
                super(SNLIClassifier, self).__init__()
280
281
                self.embed = nn.Embedding(config["n_embed"], config["d_embed"])
                self.projection = Linear(config["d_embed"], config["d_proj"])
282
                self.encoder = Encoder(config)
283
                self.dropout = nn.Dropout(p=config["dp_ratio"])
284
                self.relu = nn.ReLU()
285
286
                seq_in_size = 2 * config["d_hidden"]
                if config["birnn"]:
287
288
289
290
291
292
293
294
295
296
297
298
                    seq_in_size *= 2
                lin_config = [seq_in_size] * 2
                self.out = nn.Sequential(
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
                    Linear(*lin_config),
                    self.relu,
                    self.dropout,
299
300
301
                    Linear(seq_in_size, config["d_out"]))
                self.fix_emb = config["fix_emb"]
                self.project = config["projection"]
302
303
304
305

            def forward(self, premise, hypothesis):
                prem_embed = self.embed(premise)
                hypo_embed = self.embed(hypothesis)
306
                if self.fix_emb:
307
308
                    prem_embed = prem_embed.detach()
                    hypo_embed = hypo_embed.detach()
309
                if self.project:
310
311
312
313
314
315
316
                    prem_embed = self.relu(self.projection(prem_embed))
                    hypo_embed = self.relu(self.projection(hypo_embed))
                premise = self.encoder(prem_embed)
                hypothesis = self.encoder(hypo_embed)
                scores = self.out(torch.cat([premise, hypothesis], 1))
                return scores

317
318
319
320
321
322
323
324
325
326
327
328
329
        Config = {
            "n_embed": 100,
            "d_embed": 100,
            "d_proj": 300,
            "dp_ratio": 0.0,  # For deterministic testing TOD": change by fixing seed in checkTrace?,
            "d_hidden": 30,
            "birnn": True,
            "d_out": 300,
            "fix_emb": True,
            "projection": True,
            "n_layers": 2,
            "n_cells": 4  # 2 * n_layers because birnn = True,
        }
330
331
332
333

        premise = torch.LongTensor(48, 64).random_(0, 100)
        hypothesis = torch.LongTensor(24, 64).random_(0, 100)

334
        self.checkExportImport(SNLIClassifier(Config), (premise, hypothesis))
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    def test_super_resolution(self):
        class Net(nn.Module):

            def __init__(self, upscale_factor):
                super(Net, self).__init__()

                self.relu = nn.ReLU()
                self.conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2))
                self.conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1))
                self.conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1))
                self.conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1))
                self.pixel_shuffle = nn.PixelShuffle(upscale_factor)

            def forward(self, x):
                x = self.relu(self.conv1(x))
                x = self.relu(self.conv2(x))
                x = self.relu(self.conv3(x))
                x = self.pixel_shuffle(self.conv4(x))
                return x

        net = Net(upscale_factor=4)
        self.checkExportImport(net, (torch.rand(5, 1, 32, 32),))

359
    @unittest.skip('Need to support Loop')  # FIXME
360
    def test_time_sequence_prediction(self):
361
        class Sequence(nn.Module): #torch.jit.ScriptModule
362
363
364
365
366
367
            def __init__(self):
                super(Sequence, self).__init__()
                self.lstm1 = nn.LSTMCell(1, 51)
                self.lstm2 = nn.LSTMCell(51, 51)
                self.linear = nn.Linear(51, 1)

368
            #@torch.jit.script_method
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
            def forward(self, input):
                # TODO: add future as input with default val
                # see https://github.com/pytorch/pytorch/issues/8724
                outputs = torch.empty((3, 0))
                h_t = torch.zeros((3, 51))
                c_t = torch.zeros((3, 51))
                h_t2 = torch.zeros((3, 51))
                c_t2 = torch.zeros((3, 51))

                output = torch.zeros([3, 51])
                future = 2

                # TODO: chunk call should appear as the for loop iterable
                # We hard-code it to 4 for now.
                a, b, c, d = input.chunk(input.size(1), dim=1)
                for input_t in (a, b, c, d):
                    h_t, c_t = self.lstm1(input_t, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                for _ in range(future):  # if we should predict the future
                    h_t, c_t = self.lstm1(output, (h_t, c_t))
                    h_t2, c_t2 = self.lstm2(h_t, (h_t2, c_t2))
                    output = self.linear(h_t2)
                    outputs = torch.cat((outputs, output), 1)
                return outputs

        class Traced(nn.Module):
            def __init__(self):
                super(Traced, self).__init__()
                self.seq = Sequence()

            def forward(self, input):
                return self.seq.forward(input)

        self.checkExportImport(Traced(), (torch.rand(3, 4),))

406
    @unittest.skip('incorrectly assigned weights')  # FIXME
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    def test_vae(self):
        class VAE(nn.Module):
            def __init__(self):
                super(VAE, self).__init__()

                self.fc1 = nn.Linear(784, 400)
                self.fc21 = nn.Linear(400, 20)
                self.fc22 = nn.Linear(400, 20)
                self.fc3 = nn.Linear(20, 400)
                self.fc4 = nn.Linear(400, 784)

            def encode(self, x):
                h1 = F.relu(self.fc1(x))
                return self.fc21(h1), self.fc22(h1)

            def reparameterize(self, mu, logvar):
                if self.training:
                    std = torch.exp(0.5 * logvar)
                    eps = torch.randn_like(std)
                    return eps.mul(std).add_(mu)
                else:
                    return mu

            def decode(self, z):
                h3 = F.relu(self.fc3(z))
                return torch.sigmoid(self.fc4(h3))

            def forward(self, x):
                mu, logvar = self.encode(x.view(-1, 784))
                z = self.reparameterize(mu, logvar)
                return self.decode(z), mu, logvar

        self.checkExportImport(VAE().eval(), (torch.rand(128, 1, 28, 28),))

    def test_torchvision_resnet18(self):
442
443
444
445
446
447
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            self.checkExportImport(torchvision.models.resnet18().eval(), (torch.ones(1, 3, 224, 224),))
        finally:
            remove_inject_pytorch_nn()
448
449
450
451
452
453
454
455
456
457
458

    def test_resnet(self):
        def conv1x1(in_planes, out_planes, stride=1):
            """1x1 convolution"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)

        def conv3x3(in_planes, out_planes, stride=1):
            """3x3 convolution with padding"""
            return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                             padding=1, bias=False)

459
        class BasicBlock(nn.Module): #torch.jit.ScriptModule
460
461
462
463
464
465
466
467
468
469
470
471
472
            expansion = 1
            __constants__ = ['downsample']

            def __init__(self, inplanes, planes, stride=1, downsample=None):
                super(BasicBlock, self).__init__()
                self.conv1 = conv3x3(inplanes, planes, stride)
                self.bn1 = nn.BatchNorm2d(planes)
                self.relu = nn.ReLU(inplace=True)
                self.conv2 = conv3x3(planes, planes)
                self.bn2 = nn.BatchNorm2d(planes)
                self.downsample = downsample
                self.stride = stride

473
474
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            def forward(self, x):
                residual = x

                out = self.conv1(x)
                out = self.bn1(out)
                out = self.relu(out)

                out = self.conv2(out)
                out = self.bn2(out)

                if self.downsample is not None:
                    residual = self.downsample(x)

                out += residual
                out = self.relu(out)

                return out

493
494
        # NOTE: cannot inherit torch.jit.ScriptModule, otherwise, there would be error: 'RecursiveScriptModule' object has no attribute 'graph'
        class ResNet(nn.Module): #torch.jit.ScriptModule
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
            __constants__ = ['layer1', 'layer2', 'layer3', 'layer4']

            def __init__(self, block, layers, num_classes=1000):
                super(ResNet, self).__init__()
                self.inplanes = 64
                self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                                       bias=False)
                self.bn1 = nn.BatchNorm2d(64)
                self.relu = nn.ReLU(inplace=True)
                self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
                self.layer1 = self._make_layer(block, 64, layers[0])
                self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
                self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
                self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
                self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
                self.fc = nn.Linear(512 * block.expansion, num_classes)

                for m in self.modules():
                    if isinstance(m, nn.Conv2d):
                        torch.nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                    elif isinstance(m, nn.BatchNorm2d):
                        torch.nn.init.constant_(m.weight, 1)
                        torch.nn.init.constant_(m.bias, 0)

            def _make_layer(self, block, planes, blocks, stride=1):
                downsample = None
                if stride != 1 or self.inplanes != planes * block.expansion:
                    downsample = nn.Sequential(
                        conv1x1(self.inplanes, planes * block.expansion, stride),
                        nn.BatchNorm2d(planes * block.expansion),
                    )

                layers = []
                layers.append(block(self.inplanes, planes, stride, downsample))
                self.inplanes = planes * block.expansion
                for _ in range(1, blocks):
                    layers.append(block(self.inplanes, planes))

                return nn.Sequential(*layers)

535
536
            # NOTE: jit cannot be annotated, otherwise, module id is not matched for recorded arguments
            #@torch.jit.script_method
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            def forward(self, x):
                x = self.conv1(x)
                x = self.bn1(x)
                x = self.relu(x)
                x = self.maxpool(x)

                x = self.layer1(x)
                x = self.layer2(x)
                x = self.layer3(x)
                x = self.layer4(x)

                x = self.avgpool(x)
                x = x.view(x.size(0), -1)
                x = self.fc(x)

                return x

        resnet18 = ResNet(BasicBlock, [2, 2, 2, 2])

556
        self.checkExportImport(resnet18, (torch.randn(1, 3, 224, 224),))
557
558

    def test_alexnet(self):
559
560
561
562
563
564
565
566
        from .inject_nn import inject_pytorch_nn, remove_inject_pytorch_nn
        try:
            inject_pytorch_nn()
            x = torch.ones(1, 3, 224, 224)
            model = torchvision.models.AlexNet()
            self.checkExportImport(model, (x,))
        finally:
            remove_inject_pytorch_nn()
567
568
569

class TestConvertWithShape(TestConvert, ConvertWithShapeMixin):
    pass