pruning_bert_glue.rst 26.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/pruning_bert_glue.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_pruning_bert_glue.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_pruning_bert_glue.py:


J-shang's avatar
J-shang committed
21
22
Pruning Bert on Task MNLI
=========================
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

Workable Pruning Process
------------------------

Here we show an effective transformer pruning process that NNI team has tried, and users can use NNI to discover better processes.

The entire pruning process can be divided into the following steps:

1. Finetune the pre-trained model on the downstream task. From our experience,
   the final performance of pruning on the finetuned model is better than pruning directly on the pre-trained model.
   At the same time, the finetuned model obtained in this step will also be used as the teacher model for the following
   distillation training.
2. Pruning the attention layer at first. Here we apply block-sparse on attention layer weight,
   and directly prune the head (condense the weight) if the head was fully masked.
   If the head was partially masked, we will not prune it and recover its weight.
3. Retrain the head-pruned model with distillation. Recover the model precision before pruning FFN layer.
4. Pruning the FFN layer. Here we apply the output channels pruning on the 1st FFN layer,
   and the 2nd FFN layer input channels will be pruned due to the pruning of 1st layer output channels.
5. Retrain the final pruned model with distillation.

During the process of pruning transformer, we gained some of the following experiences:

* We using :ref:`movement-pruner` in step 2 and :ref:`taylor-fo-weight-pruner` in step 4. :ref:`movement-pruner` has good performance on attention layers,
  and :ref:`taylor-fo-weight-pruner` method has good performance on FFN layers. These two pruners are all some kinds of gradient-based pruning algorithms,
  we also try weight-based pruning algorithms like :ref:`l1-norm-pruner`, but it doesn't seem to work well in this scenario.
* Distillation is a good way to recover model precision. In terms of results, usually 1~2% improvement in accuracy can be achieved when we prune bert on mnli task.
* It is necessary to gradually increase the sparsity rather than reaching a very high sparsity all at once.

Experiment
----------

J-shang's avatar
J-shang committed
54
55
The complete pruning process will take about 8 hours on one A100.

56
57
58
Preparation
^^^^^^^^^^^

J-shang's avatar
J-shang committed
59
60
61
62
This section is mainly to get a finetuned model on the downstream task.
If you are familiar with how to finetune Bert on GLUE dataset, you can skip this section.

.. note::
63

J-shang's avatar
J-shang committed
64
65
66
    Please set ``dev_mode`` to ``False`` to run this tutorial. Here ``dev_mode`` is ``True`` by default is for generating documents.

.. GENERATED FROM PYTHON SOURCE LINES 48-51
67
68
69
70
71
72
73
74
75
76
77
78
79

.. code-block:: default


    dev_mode = True








J-shang's avatar
J-shang committed
80
.. GENERATED FROM PYTHON SOURCE LINES 52-53
81
82
83

Some basic setting.

J-shang's avatar
J-shang committed
84
.. GENERATED FROM PYTHON SOURCE LINES 53-84
85
86
87
88
89

.. code-block:: default


    from pathlib import Path
J-shang's avatar
J-shang committed
90
    from typing import Callable, Dict
91
92
93

    pretrained_model_name_or_path = 'bert-base-uncased'
    task_name = 'mnli'
J-shang's avatar
J-shang committed
94
    experiment_id = 'pruning_bert_mnli'
95
96
97
98
99
100
101
102
103
104
105
106
107

    # heads_num and layers_num should align with pretrained_model_name_or_path
    heads_num = 12
    layers_num = 12

    # used to save the experiment log
    log_dir = Path(f'./pruning_log/{pretrained_model_name_or_path}/{task_name}/{experiment_id}')
    log_dir.mkdir(parents=True, exist_ok=True)

    # used to save the finetuned model and share between different experiemnts with same pretrained_model_name_or_path and task_name
    model_dir = Path(f'./models/{pretrained_model_name_or_path}/{task_name}')
    model_dir.mkdir(parents=True, exist_ok=True)

J-shang's avatar
J-shang committed
108
109
110
111
112
    # used to save GLUE data
    data_dir = Path(f'./data')
    data_dir.mkdir(parents=True, exist_ok=True)

    # set seed
113
114
115
116
117
118
119
120
121
122
123
124
125
    from transformers import set_seed
    set_seed(1024)

    import torch
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')








J-shang's avatar
J-shang committed
126
.. GENERATED FROM PYTHON SOURCE LINES 85-86
127

J-shang's avatar
J-shang committed
128
Create dataloaders.
129

J-shang's avatar
J-shang committed
130
.. GENERATED FROM PYTHON SOURCE LINES 86-152
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

.. code-block:: default


    from torch.utils.data import DataLoader

    from datasets import load_dataset
    from transformers import BertTokenizerFast, DataCollatorWithPadding

    task_to_keys = {
        'cola': ('sentence', None),
        'mnli': ('premise', 'hypothesis'),
        'mrpc': ('sentence1', 'sentence2'),
        'qnli': ('question', 'sentence'),
        'qqp': ('question1', 'question2'),
        'rte': ('sentence1', 'sentence2'),
        'sst2': ('sentence', None),
        'stsb': ('sentence1', 'sentence2'),
        'wnli': ('sentence1', 'sentence2'),
    }

J-shang's avatar
J-shang committed
152
    def prepare_dataloaders(cache_dir=data_dir, train_batch_size=32, eval_batch_size=32):
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path)
        sentence1_key, sentence2_key = task_to_keys[task_name]
        data_collator = DataCollatorWithPadding(tokenizer)

        # used to preprocess the raw data
        def preprocess_function(examples):
            # Tokenize the texts
            args = (
                (examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
            )
            result = tokenizer(*args, padding=False, max_length=128, truncation=True)

            if 'label' in examples:
                # In all cases, rename the column to labels because the model will expect that.
                result['labels'] = examples['label']
            return result

        raw_datasets = load_dataset('glue', task_name, cache_dir=cache_dir)
        for key in list(raw_datasets.keys()):
            if 'test' in key:
                raw_datasets.pop(key)

        processed_datasets = raw_datasets.map(preprocess_function, batched=True,
J-shang's avatar
J-shang committed
176
                                              remove_columns=raw_datasets['train'].column_names)
177
178

        train_dataset = processed_datasets['train']
J-shang's avatar
J-shang committed
179
180
181
182
183
184
185
186
187
        if task_name == 'mnli':
            validation_datasets = {
                'validation_matched': processed_datasets['validation_matched'],
                'validation_mismatched': processed_datasets['validation_mismatched']
            }
        else:
            validation_datasets = {
                'validation': processed_datasets['validation']
            }
188

J-shang's avatar
J-shang committed
189
190
191
192
193
        train_dataloader = DataLoader(train_dataset, shuffle=True, collate_fn=data_collator, batch_size=train_batch_size)
        validation_dataloaders = {
            val_name: DataLoader(val_dataset, collate_fn=data_collator, batch_size=eval_batch_size) \
                for val_name, val_dataset in validation_datasets.items()
        }
194

J-shang's avatar
J-shang committed
195
        return train_dataloader, validation_dataloaders
196
197


J-shang's avatar
J-shang committed
198
    train_dataloader, validation_dataloaders = prepare_dataloaders()
199
200
201
202




J-shang's avatar
J-shang committed
203
.. GENERATED FROM PYTHON SOURCE LINES 153-154
204
205
206

Training function & evaluation function.

J-shang's avatar
J-shang committed
207
.. GENERATED FROM PYTHON SOURCE LINES 154-277
208
209
210
211

.. code-block:: default


J-shang's avatar
J-shang committed
212
    import functools
213
    import time
J-shang's avatar
J-shang committed
214

215
216
    import torch.nn.functional as F
    from datasets import load_metric
J-shang's avatar
J-shang committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    from transformers.modeling_outputs import SequenceClassifierOutput


    def training(model: torch.nn.Module,
                 optimizer: torch.optim.Optimizer,
                 criterion: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
                 lr_scheduler: torch.optim.lr_scheduler._LRScheduler = None,
                 max_steps: int = None,
                 max_epochs: int = None,
                 train_dataloader: DataLoader = None,
                 distillation: bool = False,
                 teacher_model: torch.nn.Module = None,
                 distil_func: Callable = None,
                 log_path: str = Path(log_dir) / 'training.log',
                 save_best_model: bool = False,
                 save_path: str = None,
                 evaluation_func: Callable = None,
                 eval_per_steps: int = 1000,
                 device=None):

        assert train_dataloader is not None
238
239

        model.train()
J-shang's avatar
J-shang committed
240
241
        if teacher_model is not None:
            teacher_model.eval()
242
243
244
        current_step = 0
        best_result = 0

J-shang's avatar
J-shang committed
245
246
247
248
249
250
        total_epochs = max_steps // len(train_dataloader) + 1 if max_steps else max_epochs if max_epochs else 3
        total_steps = max_steps if max_steps else total_epochs * len(train_dataloader)

        print(f'Training {total_epochs} epochs, {total_steps} steps...')

        for current_epoch in range(total_epochs):
251
            for batch in train_dataloader:
J-shang's avatar
J-shang committed
252
253
                if current_step >= total_steps:
                    return
254
255
256
257
258
                batch.to(device)
                outputs = model(**batch)
                loss = outputs.loss

                if distillation:
J-shang's avatar
J-shang committed
259
260
261
262
                    assert teacher_model is not None
                    with torch.no_grad():
                        teacher_outputs = teacher_model(**batch)
                    distil_loss = distil_func(outputs, teacher_outputs)
263
264
265
                    loss = 0.1 * loss + 0.9 * distil_loss

                loss = criterion(loss, None)
J-shang's avatar
J-shang committed
266
                optimizer.zero_grad()
267
268
269
                loss.backward()
                optimizer.step()

J-shang's avatar
J-shang committed
270
                # per step schedule
271
272
273
274
275
                if lr_scheduler:
                    lr_scheduler.step()

                current_step += 1

J-shang's avatar
J-shang committed
276
                if current_step % eval_per_steps == 0 or current_step % len(train_dataloader) == 0:
277
278
279
280
281
                    result = evaluation_func(model) if evaluation_func else None
                    with (log_path).open('a+') as f:
                        msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())), current_epoch, current_step, result)
                        f.write(msg)
                    # if it's the best model, save it.
J-shang's avatar
J-shang committed
282
                    if save_best_model and (result is None or best_result < result['default']):
283
284
                        assert save_path is not None
                        torch.save(model.state_dict(), save_path)
J-shang's avatar
J-shang committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                        best_result = None if result is None else result['default']


    def distil_loss_func(stu_outputs: SequenceClassifierOutput, tea_outputs: SequenceClassifierOutput, encoder_layer_idxs=[]):
        encoder_hidden_state_loss = []
        for i, idx in enumerate(encoder_layer_idxs[:-1]):
            encoder_hidden_state_loss.append(F.mse_loss(stu_outputs.hidden_states[i], tea_outputs.hidden_states[idx]))
        logits_loss = F.kl_div(F.log_softmax(stu_outputs.logits / 2, dim=-1), F.softmax(tea_outputs.logits / 2, dim=-1), reduction='batchmean') * (2 ** 2)

        distil_loss = 0
        for loss in encoder_hidden_state_loss:
            distil_loss += loss
        distil_loss += logits_loss
        return distil_loss
299
300


J-shang's avatar
J-shang committed
301
302
    def evaluation(model: torch.nn.Module, validation_dataloaders: Dict[str, DataLoader] = None, device=None):
        assert validation_dataloaders is not None
303
304
        training = model.training
        model.eval()
J-shang's avatar
J-shang committed
305

306
307
308
        is_regression = task_name == 'stsb'
        metric = load_metric('glue', task_name)

J-shang's avatar
J-shang committed
309
310
311
312
        result = {}
        default_result = 0
        for val_name, validation_dataloader in validation_dataloaders.items():
            for batch in validation_dataloader:
313
314
315
316
317
318
319
                batch.to(device)
                outputs = model(**batch)
                predictions = outputs.logits.argmax(dim=-1) if not is_regression else outputs.logits.squeeze()
                metric.add_batch(
                    predictions=predictions,
                    references=batch['labels'],
                )
J-shang's avatar
J-shang committed
320
321
322
            result[val_name] = metric.compute()
            default_result += result[val_name].get('f1', result[val_name].get('accuracy', 0))
        result['default'] = default_result / len(result)
323
324
325
326

        model.train(training)
        return result

J-shang's avatar
J-shang committed
327
328

    evaluation_func = functools.partial(evaluation, validation_dataloaders=validation_dataloaders, device=device)
329
330


J-shang's avatar
J-shang committed
331
332
    def fake_criterion(loss, _):
        return loss
333
334
335
336
337
338
339







J-shang's avatar
J-shang committed
340
341

.. GENERATED FROM PYTHON SOURCE LINES 278-279
342
343
344

Prepare pre-trained model and finetuning on downstream task.

J-shang's avatar
J-shang committed
345
.. GENERATED FROM PYTHON SOURCE LINES 279-320
346
347
348
349
350
351
352
353

.. code-block:: default


    from torch.optim import Adam
    from torch.optim.lr_scheduler import LambdaLR
    from transformers import BertForSequenceClassification

J-shang's avatar
J-shang committed
354

355
356
357
    def create_pretrained_model():
        is_regression = task_name == 'stsb'
        num_labels = 1 if is_regression else (3 if task_name == 'mnli' else 2)
J-shang's avatar
J-shang committed
358
359
360
        model = BertForSequenceClassification.from_pretrained(pretrained_model_name_or_path, num_labels=num_labels)
        model.bert.config.output_hidden_states = True
        return model
361
362


J-shang's avatar
J-shang committed
363
364
    def create_finetuned_model():
        finetuned_model = create_pretrained_model()
365
366
367
        finetuned_model_state_path = Path(model_dir) / 'finetuned_model_state.pth'

        if finetuned_model_state_path.exists():
J-shang's avatar
J-shang committed
368
369
            finetuned_model.load_state_dict(torch.load(finetuned_model_state_path, map_location='cpu'))
            finetuned_model.to(device)
370
371
372
        elif dev_mode:
            pass
        else:
J-shang's avatar
J-shang committed
373
374
375
            steps_per_epoch = len(train_dataloader)
            training_epochs = 3
            optimizer = Adam(finetuned_model.parameters(), lr=3e-5, eps=1e-8)
376
377
378
379
380

            def lr_lambda(current_step: int):
                return max(0.0, float(training_epochs * steps_per_epoch - current_step) / float(training_epochs * steps_per_epoch))

            lr_scheduler = LambdaLR(optimizer, lr_lambda)
J-shang's avatar
J-shang committed
381
382
383
384
            training(finetuned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler,
                     max_epochs=training_epochs, train_dataloader=train_dataloader, log_path=log_dir / 'finetuning_on_downstream.log',
                     save_best_model=True, save_path=finetuned_model_state_path, evaluation_func=evaluation_func, device=device)
        return finetuned_model
385
386


J-shang's avatar
J-shang committed
387
    finetuned_model = create_finetuned_model()
388
389
390
391
392





J-shang's avatar
J-shang committed
393
.. GENERATED FROM PYTHON SOURCE LINES 321-328
394
395
396

Pruning
^^^^^^^
J-shang's avatar
J-shang committed
397
398
399
According to experience, it is easier to achieve good results by pruning the attention part and the FFN part in stages.
Of course, pruning together can also achieve the similar effect, but more parameter adjustment attempts are required.
So in this section, we do pruning in stages.
400

J-shang's avatar
J-shang committed
401
402
403
First, we prune the attention layer with MovementPruner.

.. GENERATED FROM PYTHON SOURCE LINES 328-388
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

.. code-block:: default


    steps_per_epoch = len(train_dataloader)

    # Set training steps/epochs for pruning.

    if not dev_mode:
        total_epochs = 4
        total_steps = total_epochs * steps_per_epoch
        warmup_steps = 1 * steps_per_epoch
        cooldown_steps = 1 * steps_per_epoch
    else:
        total_epochs = 1
        total_steps = 3
        warmup_steps = 1
        cooldown_steps = 1

    # Initialize evaluator used by MovementPruner.

    import nni
    from nni.algorithms.compression.v2.pytorch import TorchEvaluator

J-shang's avatar
J-shang committed
428
429
430
    movement_training = functools.partial(training, train_dataloader=train_dataloader,
                                          log_path=log_dir / 'movement_pruning.log',
                                          evaluation_func=evaluation_func, device=device)
431
432
433
434
435
436
437
438
439
440
441
    traced_optimizer = nni.trace(Adam)(finetuned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        if current_step < warmup_steps:
            return float(current_step) / warmup_steps
        return max(0.0, float(total_steps - current_step) / float(total_steps - warmup_steps))

    traced_scheduler = nni.trace(LambdaLR)(traced_optimizer, lr_lambda)
    evaluator = TorchEvaluator(movement_training, traced_optimizer, fake_criterion, traced_scheduler)

    # Apply block-soft-movement pruning on attention layers.
J-shang's avatar
J-shang committed
442
    # Note that block sparse is introduced by `sparse_granularity='auto'`, and only support `bert`, `bart`, `t5` right now.
443
444
445

    from nni.compression.pytorch.pruning import MovementPruner

J-shang's avatar
J-shang committed
446
447
448
449
450
451
    config_list = [{
        'op_types': ['Linear'],
        'op_partial_names': ['bert.encoder.layer.{}.attention'.format(i) for i in range(layers_num)],
        'sparsity': 0.1
    }]

452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    pruner = MovementPruner(model=finetuned_model,
                            config_list=config_list,
                            evaluator=evaluator,
                            training_epochs=total_epochs,
                            training_steps=total_steps,
                            warm_up_step=warmup_steps,
                            cool_down_beginning_step=total_steps - cooldown_steps,
                            regular_scale=10,
                            movement_mode='soft',
                            sparse_granularity='auto')
    _, attention_masks = pruner.compress()
    pruner.show_pruned_weights()

    torch.save(attention_masks, Path(log_dir) / 'attention_masks.pth')




J-shang's avatar
J-shang committed
470
.. GENERATED FROM PYTHON SOURCE LINES 389-393
471

J-shang's avatar
J-shang committed
472
473
Load a new finetuned model to do speedup, you can think of this as using the finetuned state to initialize the pruned model weights.
Note that nni speedup don't support replacing attention module, so here we manully replace the attention module.
474
475
476

If the head is entire masked, physically prune it and create config_list for FFN pruning.

J-shang's avatar
J-shang committed
477
.. GENERATED FROM PYTHON SOURCE LINES 393-423
478
479
480
481
482
483
484
485

.. code-block:: default


    attention_pruned_model = create_finetuned_model().to(device)
    attention_masks = torch.load(Path(log_dir) / 'attention_masks.pth')

    ffn_config_list = []
J-shang's avatar
J-shang committed
486
    layer_remained_idxs = []
487
488
489
490
491
    module_list = []
    for i in range(0, layers_num):
        prefix = f'bert.encoder.layer.{i}.'
        value_mask: torch.Tensor = attention_masks[prefix + 'attention.self.value']['weight']
        head_mask = (value_mask.reshape(heads_num, -1).sum(-1) == 0.)
J-shang's avatar
J-shang committed
492
493
494
495
        head_idxs = torch.arange(len(head_mask))[head_mask].long().tolist()
        print(f'layer {i} prune {len(head_idxs)} head: {head_idxs}')
        if len(head_idxs) != heads_num:
            attention_pruned_model.bert.encoder.layer[i].attention.prune_heads(head_idxs)
496
497
498
            module_list.append(attention_pruned_model.bert.encoder.layer[i])
            # The final ffn weight remaining ratio is the half of the attention weight remaining ratio.
            # This is just an empirical configuration, you can use any other method to determine this sparsity.
J-shang's avatar
J-shang committed
499
            sparsity = 1 - (1 - len(head_idxs) / heads_num) * 0.5
500
            # here we use a simple sparsity schedule, we will prune ffn in 12 iterations, each iteration prune `sparsity_per_iter`.
J-shang's avatar
J-shang committed
501
502
503
504
505
506
            sparsity_per_iter = 1 - (1 - sparsity) ** (1 / 12)
            ffn_config_list.append({
                'op_names': [f'bert.encoder.layer.{len(layer_remained_idxs)}.intermediate.dense'],
                'sparsity': sparsity_per_iter
            })
            layer_remained_idxs.append(i)
507
508

    attention_pruned_model.bert.encoder.layer = torch.nn.ModuleList(module_list)
J-shang's avatar
J-shang committed
509
    distil_func = functools.partial(distil_loss_func, encoder_layer_idxs=layer_remained_idxs)
510
511
512
513




J-shang's avatar
J-shang committed
514
.. GENERATED FROM PYTHON SOURCE LINES 424-425
515
516
517

Retrain the attention pruned model with distillation.

J-shang's avatar
J-shang committed
518
.. GENERATED FROM PYTHON SOURCE LINES 425-451
519
520
521
522
523
524
525
526
527
528
529
530
531

.. code-block:: default


    if not dev_mode:
        total_epochs = 5
        total_steps = None
        distillation = True
    else:
        total_epochs = 1
        total_steps = 1
        distillation = False

J-shang's avatar
J-shang committed
532
    teacher_model = create_finetuned_model()
533
534
535
536
537
538
539
    optimizer = Adam(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)

    def lr_lambda(current_step: int):
        return max(0.0, float(total_epochs * steps_per_epoch - current_step) / float(total_epochs * steps_per_epoch))

    lr_scheduler = LambdaLR(optimizer, lr_lambda)
    at_model_save_path = log_dir / 'attention_pruned_model_state.pth'
J-shang's avatar
J-shang committed
540
541
542
543
    training(attention_pruned_model, optimizer, fake_criterion, lr_scheduler=lr_scheduler, max_epochs=total_epochs,
             max_steps=total_steps, train_dataloader=train_dataloader, distillation=distillation, teacher_model=teacher_model,
             distil_func=distil_func, log_path=log_dir / 'retraining.log', save_best_model=True, save_path=at_model_save_path,
             evaluation_func=evaluation_func, device=device)
544
545
546
547
548
549
550

    if not dev_mode:
        attention_pruned_model.load_state_dict(torch.load(at_model_save_path))




J-shang's avatar
J-shang committed
551
.. GENERATED FROM PYTHON SOURCE LINES 452-456
552
553

Iterative pruning FFN with TaylorFOWeightPruner in 12 iterations.
J-shang's avatar
J-shang committed
554
Finetuning 3000 steps after each pruning iteration, then finetuning 2 epochs after pruning finished.
555
556
557

NNI will support per-step-pruning-schedule in the future, then can use an pruner to replace the following code.

J-shang's avatar
J-shang committed
558
.. GENERATED FROM PYTHON SOURCE LINES 456-537
559
560
561
562
563

.. code-block:: default


    if not dev_mode:
J-shang's avatar
J-shang committed
564
        total_epochs = 7
565
566
        total_steps = None
        taylor_pruner_steps = 1000
J-shang's avatar
J-shang committed
567
568
        steps_per_iteration = 3000
        total_pruning_steps = 36000
569
570
571
572
573
574
575
576
577
578
579
580
        distillation = True
    else:
        total_epochs = 1
        total_steps = 6
        taylor_pruner_steps = 2
        steps_per_iteration = 2
        total_pruning_steps = 4
        distillation = False

    from nni.compression.pytorch.pruning import TaylorFOWeightPruner
    from nni.compression.pytorch.speedup import ModelSpeedup

J-shang's avatar
J-shang committed
581
582
    distil_training = functools.partial(training, train_dataloader=train_dataloader, distillation=distillation,
                                        teacher_model=teacher_model, distil_func=distil_func, device=device)
583
584
585
586
587
588
589
590
591
592
593
594
595
596
    traced_optimizer = nni.trace(Adam)(attention_pruned_model.parameters(), lr=3e-5, eps=1e-8)
    evaluator = TorchEvaluator(distil_training, traced_optimizer, fake_criterion)

    current_step = 0
    best_result = 0
    init_lr = 3e-5

    dummy_input = torch.rand(8, 128, 768).to(device)

    attention_pruned_model.train()
    for current_epoch in range(total_epochs):
        for batch in train_dataloader:
            if total_steps and current_step >= total_steps:
                break
J-shang's avatar
J-shang committed
597
            # pruning with TaylorFOWeightPruner & reinitialize optimizer
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            if current_step % steps_per_iteration == 0 and current_step < total_pruning_steps:
                check_point = attention_pruned_model.state_dict()
                pruner = TaylorFOWeightPruner(attention_pruned_model, ffn_config_list, evaluator, taylor_pruner_steps)
                _, ffn_masks = pruner.compress()
                renamed_ffn_masks = {}
                # rename the masks keys, because we only speedup the bert.encoder
                for model_name, targets_mask in ffn_masks.items():
                    renamed_ffn_masks[model_name.split('bert.encoder.')[1]] = targets_mask
                pruner._unwrap_model()
                attention_pruned_model.load_state_dict(check_point)
                ModelSpeedup(attention_pruned_model.bert.encoder, dummy_input, renamed_ffn_masks).speedup_model()
                optimizer = Adam(attention_pruned_model.parameters(), lr=init_lr)

            batch.to(device)
            # manually schedule lr
            for params_group in optimizer.param_groups:
                params_group['lr'] = (1 - current_step / (total_epochs * steps_per_epoch)) * init_lr

            outputs = attention_pruned_model(**batch)
            loss = outputs.loss

            # distillation
J-shang's avatar
J-shang committed
620
621
622
623
624
            if distillation:
                assert teacher_model is not None
                with torch.no_grad():
                    teacher_outputs = teacher_model(**batch)
                distil_loss = distil_func(outputs, teacher_outputs)
625
                loss = 0.1 * loss + 0.9 * distil_loss
J-shang's avatar
J-shang committed
626
627

            optimizer.zero_grad()
628
629
630
631
            loss.backward()
            optimizer.step()

            current_step += 1
J-shang's avatar
J-shang committed
632

633
634
635
636
637
638
639
640
641
642
643
644
645
            if current_step % 1000 == 0 or current_step % len(train_dataloader) == 0:
                result = evaluation_func(attention_pruned_model)
                with (log_dir / 'ffn_pruning.log').open('a+') as f:
                    msg = '[{}] Epoch {}, Step {}: {}\n'.format(time.asctime(time.localtime(time.time())),
                                                                current_epoch, current_step, result)
                    f.write(msg)
                if current_step >= total_pruning_steps and best_result < result['default']:
                    torch.save(attention_pruned_model, log_dir / 'best_model.pth')
                    best_result = result['default']




J-shang's avatar
J-shang committed
646
.. GENERATED FROM PYTHON SOURCE LINES 538-607
647
648
649

Result
------
J-shang's avatar
J-shang committed
650
The speedup is test on the entire validation dataset with batch size 128 on A100.
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
We test under two pytorch version and found the latency varying widely.

Setting 1: pytorch 1.12.1

Setting 2: pytorch 1.10.0

.. list-table:: Prune Bert-base-uncased on MNLI
    :header-rows: 1
    :widths: auto

    * - Attention Pruning Method
      - FFN Pruning Method
      - Total Sparsity
      - Accuracy
      - Acc. Drop
      - Speedup (S1)
      - Speedup (S2)
    * -
      -
J-shang's avatar
J-shang committed
670
671
      - 85.1M (-0.0%)
      - 84.85 / 85.28
672
      - +0.0 / +0.0
J-shang's avatar
J-shang committed
673
674
675
676
677
678
679
680
681
      - 25.60s (x1.00)
      - 8.10s (x1.00)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
      - :ref:`taylor-fo-weight-pruner`
      - 54.1M (-36.43%)
      - 85.38 / 85.41
      - +0.53 / +0.13
      - 17.93s (x1.43)
      - 7.22s (x1.12)
J-shang's avatar
J-shang committed
682
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
683
      - :ref:`taylor-fo-weight-pruner`
J-shang's avatar
J-shang committed
684
685
686
687
688
      - 37.1M (-56.40%)
      - 84.73 / 85.12
      - -0.12 / -0.16
      - 12.83s (x2.00)
      - 5.61s (x1.44)
J-shang's avatar
J-shang committed
689
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
690
      - :ref:`taylor-fo-weight-pruner`
J-shang's avatar
J-shang committed
691
692
693
694
695
      - 24.1M (-71.68%)
      - 84.14 / 84.78
      - -0.71 / -0.50
      - 8.93s (x2.87)
      - 4.55s (x1.78)
J-shang's avatar
J-shang committed
696
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
697
      - :ref:`taylor-fo-weight-pruner`
J-shang's avatar
J-shang committed
698
699
700
701
702
      - 14.3M (-83.20%)
      - 83.26 / 82.96
      - -1.59 / -2.32
      - 5.98s (x4.28)
      - 3.56s (x2.28)
J-shang's avatar
J-shang committed
703
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
704
      - :ref:`taylor-fo-weight-pruner`
J-shang's avatar
J-shang committed
705
706
707
708
709
710
711
712
713
714
715
716
      - 9.9M (-88.37%)
      - 82.22 / 82.19
      - -2.63 / -3.09
      - 4.36s (x5.88)
      - 3.12s (x2.60)
    * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
      - :ref:`taylor-fo-weight-pruner`
      - 8.8M (-89.66%)
      - 81.64 / 82.39
      - -3.21 / -2.89
      - 3.88s (x6.60)
      - 2.81s (x2.88)
717
718
719
720


.. rst-class:: sphx-glr-timing

J-shang's avatar
J-shang committed
721
   **Total running time of the script:** ( 0 minutes  20.822 seconds)
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744


.. _sphx_glr_download_tutorials_pruning_bert_glue.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: pruning_bert_glue.py <pruning_bert_glue.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: pruning_bert_glue.ipynb <pruning_bert_glue.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_