mnist.py 7.29 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
"""A deep MNIST classifier using convolutional layers.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import nni
import logging
import math
import tempfile
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
logger = logging.getLogger('mnist')
FLAGS = None


class MnistNetwork(object):

    def __init__(self, channel_1_num=32, channel_2_num=64, conv_size=5,
        hidden_size=1024, pool_size=2, learning_rate=0.0001, x_dim=784,
        y_dim=10):
        self.channel_1_num = channel_1_num
        self.channel_2_num = channel_2_num
23
24
25
26
        self.conv_size = nni.choice({2: 2, 3: 3, 5: 5, 7: 7}, name=
            'self.conv_size')
        self.hidden_size = nni.choice({124: 124, 512: 512, 1024: 1024},
            name='self.hidden_size')
27
28
29
30
31
32
33
34
35
36
37
38
39
40
        self.pool_size = pool_size
        self.learning_rate = nni.randint(2, 3, 5, name='self.learning_rate')
        self.x_dim = x_dim
        self.y_dim = y_dim

    def build_network(self):
        self.x = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
        self.y = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
        self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
        with tf.name_scope('reshape'):
            try:
                input_dim = int(math.sqrt(self.x_dim))
            except:
                logger.debug(
41
                    'input dim cannot be sqrt and reshape. input dim: ', str(self.x_dim))
42
43
44
45
46
47
                raise
            x_image = tf.reshape(self.x, [-1, input_dim, input_dim, 1])
        with tf.name_scope('conv1'):
            W_conv1 = weight_variable([self.conv_size, self.conv_size, 1,
                self.channel_1_num])
            b_conv1 = bias_variable([self.channel_1_num])
48
49
50
51
52
53
54
55
            h_conv1 = nni.function_choice({
                'tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)': lambda :
                tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1),
                'tf.nn.sigmoid(conv2d(x_image, W_conv1) + b_conv1)': lambda :
                tf.nn.sigmoid(conv2d(x_image, W_conv1) + b_conv1),
                'tf.nn.tanh(conv2d(x_image, W_conv1) + b_conv1)': lambda :
                tf.nn.tanh(conv2d(x_image, W_conv1) + b_conv1)}, name=
                'tf.nn.relu')
56
        with tf.name_scope('pool1'):
57
58
59
60
61
            h_pool1 = nni.function_choice({
                'max_pool(h_conv1, self.pool_size)': lambda : max_pool(
                h_conv1, self.pool_size),
                'avg_pool(h_conv1, self.pool_size)': lambda : avg_pool(
                h_conv1, self.pool_size)}, name='max_pool')
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        with tf.name_scope('conv2'):
            W_conv2 = weight_variable([self.conv_size, self.conv_size, self
                .channel_1_num, self.channel_2_num])
            b_conv2 = bias_variable([self.channel_2_num])
            h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
        with tf.name_scope('pool2'):
            h_pool2 = max_pool(h_conv2, self.pool_size)
        last_dim = int(input_dim / (self.pool_size * self.pool_size))
        with tf.name_scope('fc1'):
            W_fc1 = weight_variable([last_dim * last_dim * self.
                channel_2_num, self.hidden_size])
            b_fc1 = bias_variable([self.hidden_size])
        h_pool2_flat = tf.reshape(h_pool2, [-1, last_dim * last_dim * self.
            channel_2_num])
        h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
        with tf.name_scope('dropout'):
            h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
        with tf.name_scope('fc2'):
            W_fc2 = weight_variable([self.hidden_size, self.y_dim])
            b_fc2 = bias_variable([self.y_dim])
            y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
        with tf.name_scope('loss'):
            cross_entropy = tf.reduce_mean(tf.nn.
                softmax_cross_entropy_with_logits(labels=self.y, logits=y_conv)
                )
        with tf.name_scope('adam_optimizer'):
            self.train_step = tf.train.AdamOptimizer(self.learning_rate
                ).minimize(cross_entropy)
        with tf.name_scope('accuracy'):
            correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(
                self.y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.
                float32))
        return


def conv2d(x, W):
    """conv2d returns a 2d convolution layer with full stride."""
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')


def max_pool(x, pool_size):
    """max_pool downsamples a feature map by 2X."""
    return tf.nn.max_pool(x, ksize=[1, pool_size, pool_size, 1], strides=[1,
        pool_size, pool_size, 1], padding='SAME')


def avg_pool(x, pool_size):
    return tf.nn.avg_pool(x, ksize=[1, pool_size, pool_size, 1], strides=[1,
        pool_size, pool_size, 1], padding='SAME')


def weight_variable(shape):
    """weight_variable generates a weight variable of a given shape."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)


def bias_variable(shape):
    """bias_variable generates a bias variable of a given shape."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)


def main():
    data_dir = '/tmp/tensorflow/mnist/input_data'
    mnist = input_data.read_data_sets(data_dir, one_hot=True)
129
    logger.debug('Mnist download data done.')
130
131
132
133
    mnist_network = MnistNetwork()
    mnist_network.build_network()
    logger.debug('Mnist build network done.')
    graph_location = tempfile.mkdtemp()
134
    logger.debug('Saving graph to: %s', graph_location)
135
136
137
138
139
140
141
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())
    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        batch_num = 200
        for i in range(batch_num):
142
143
            batch_size = nni.choice({50: 50, 250: 250, 500: 500}, name=
                'batch_size')
144
            batch = mnist.train.next_batch(batch_size)
145
            dropout_rate = nni.choice({1: 1, 5: 5}, name='dropout_rate')
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
            mnist_network.train_step.run(feed_dict={mnist_network.x: batch[
                0], mnist_network.y: batch[1], mnist_network.keep_prob:
                dropout_rate})
            if i % 100 == 0:
                test_acc = mnist_network.accuracy.eval(feed_dict={
                    mnist_network.x: mnist.test.images, mnist_network.y:
                    mnist.test.labels, mnist_network.keep_prob: 1.0})
                nni.report_intermediate_result(test_acc)
        test_acc = mnist_network.accuracy.eval(feed_dict={mnist_network.x:
            mnist.test.images, mnist_network.y: mnist.test.labels,
            mnist_network.keep_prob: 1.0})
        nni.report_final_result(test_acc)


def generate_default_params():
    params = {'data_dir': '/tmp/tensorflow/mnist/input_data',
        'dropout_rate': 0.5, 'channel_1_num': 32, 'channel_2_num': 64,
163
        'conv_size': 5, 'pool_size': 2, 'hidden_size': 1024, 'batch_size':
164
165
166
167
168
        50, 'batch_num': 200, 'learning_rate': 0.0001}
    return params


if __name__ == '__main__':
chicm-ms's avatar
chicm-ms committed
169
    nni.get_next_parameter()
170
171
172
173
174
175
176
177
    try:
        params = generate_default_params()
        logger.debug('params')
        logger.debug('params update')
        main()
    except:
        logger.exception('Got some exception in while loop in mnist.py')
        raise