test_pruners.py 11.2 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
8
import torch.utils.data
chicm-ms's avatar
chicm-ms committed
9
import math
10
11
import sys
import unittest
chicm-ms's avatar
chicm-ms committed
12
from unittest import TestCase, main
13
from nni.algorithms.compression.pytorch.pruning import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
14
    L2FilterPruner, AGPPruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner, \
15
16
    TaylorFOWeightFilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner, \
    AutoCompressPruner, AMCPruner
17
18

sys.path.append(os.path.dirname(__file__))
19
from models.pytorch_models.mobilenet import MobileNet
chicm-ms's avatar
chicm-ms committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
43
        'pruner_class': AGPPruner,
chicm-ms's avatar
chicm-ms committed
44
        'config_list': [{
45
            'initial_sparsity': 0.,
chicm-ms's avatar
chicm-ms committed
46
47
48
49
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
50
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
        }],
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
94
95
96
97
98
99
100
101
102
103
    'taylorfo': {
        'pruner_class': TaylorFOWeightFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
chicm-ms's avatar
chicm-ms committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
Guoxin's avatar
Guoxin committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    },
    'netadapt': {
        'pruner_class': NetAdaptPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'short_term_fine_tuner': lambda model:model, 
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'simulatedannealing': {
        'pruner_class': SimulatedAnnealingPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'admm': {
        'pruner_class': ADMMPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'trainer': lambda model, optimizer, criterion, epoch, callback : model, 
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
154
    'autocompress_l1': {
Guoxin's avatar
Guoxin committed
155
156
157
158
159
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
        'base_algo': 'l1',
        'trainer': lambda model, optimizer, criterion, epoch, callback : model,
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
    },
    'autocompress_l2': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'base_algo': 'l2',
        'trainer': lambda model, optimizer, criterion, epoch, callback : model,
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
    },
    'autocompress_fpgm': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'base_algo': 'fpgm',
Guoxin's avatar
Guoxin committed
185
186
187
188
        'trainer': lambda model, optimizer, criterion, epoch, callback : model,
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
189
190
191
192
193
194
    },
    'amc': {
        'pruner_class': AMCPruner,
        'config_list':[{
            'op_types': ['Conv2d', 'Linear']
        }]
chicm-ms's avatar
chicm-ms committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

209
def pruners_test(pruner_names=['level', 'agp', 'slim', 'fpgm', 'l1', 'l2', 'taylorfo', 'mean_activation', 'apoz', 'netadapt', 'simulatedannealing', 'admm', 'autocompress_l1', 'autocompress_l2', 'autocompress_fpgm',], bias=True):
chicm-ms's avatar
chicm-ms committed
210
    for pruner_name in pruner_names:
Guoxin's avatar
Guoxin committed
211
212
213
        print('testing {}...'.format(pruner_name))
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = Model(bias=bias).to(device)
chicm-ms's avatar
chicm-ms committed
214
215
216
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

Guoxin's avatar
Guoxin committed
217
218
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
219
220
221
222
223
224
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

Guoxin's avatar
Guoxin committed
225
226
227
228
229
230
        if pruner_name == 'netadapt':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, short_term_fine_tuner=prune_config[pruner_name]['short_term_fine_tuner'], evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'simulatedannealing':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'admm':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'])
231
232
        elif pruner_name.startswith('autocompress'):
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'], evaluator=prune_config[pruner_name]['evaluator'], dummy_input=x, base_algo=prune_config[pruner_name]['base_algo'])
Guoxin's avatar
Guoxin committed
233
        else:
Guoxin's avatar
Guoxin committed
234
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, optimizer)
chicm-ms's avatar
chicm-ms committed
235
236
        pruner.compress()

Guoxin's avatar
Guoxin committed
237
238
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
239
240
241
242
243
244
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

245
246
247
248
249
        if pruner_name == 'taylorfo':
            # taylorfo algorithm calculate contributions at first iteration(step), and do pruning
            # when iteration >= statistics_batch_num (default 1)
            optimizer.step()

Guoxin's avatar
Guoxin committed
250
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28), device=device)
chicm-ms's avatar
chicm-ms committed
251
252
253
254

        for v in prune_config[pruner_name]['validators']:
            v(model)

Guoxin's avatar
Guoxin committed
255
256
257
258
259
    
    filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', './search_history.csv', './search_result.json']
    for f in filePaths:
        if os.path.exists(f):
            os.remove(f)
chicm-ms's avatar
chicm-ms committed
260

261
def _test_agp(pruning_algorithm):
262
263
264
265
        model = Model()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config['agp']['config_list']

266
        pruner = AGPPruner(model, config_list, optimizer, pruning_algorithm=pruning_algorithm)
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()

        for epoch in range(config_list[0]['start_epoch'], config_list[0]['end_epoch']+1):
            pruner.update_epoch(epoch)
            out = model(x)
            loss = F.cross_entropy(out, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            target_sparsity = pruner.compute_target_sparsity(config_list[0])
            actual_sparsity = (model.conv1.weight_mask == 0).sum().item() / model.conv1.weight_mask.numel()
            # set abs_tol = 0.2, considering the sparsity error for channel pruning when number of channels is small.
            assert math.isclose(actual_sparsity, target_sparsity, abs_tol=0.2)

285
286
287
288
289
290
291
class SimpleDataset:
    def __getitem__(self, index):
        return torch.randn(3, 32, 32), 1.

    def __len__(self):
        return 1000

chicm-ms's avatar
chicm-ms committed
292
293
294
295
296
297
298
class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

299
    def test_agp_pruner(self):
300
        for pruning_algorithm in ['l1', 'l2', 'fpgm', 'taylorfo', 'apoz']:
301
            _test_agp(pruning_algorithm)
302
303
304

        for pruning_algorithm in ['level']:
            prune_config['agp']['config_list'][0]['op_types'] = ['default']
305
            _test_agp(pruning_algorithm)
306

307
308
309
310
311
312
313
314
315
316
    def testAMC(self):
        model = MobileNet(n_class=10)

        def validate(val_loader, model):
            return 80.
        val_loader = torch.utils.data.DataLoader(SimpleDataset(), batch_size=16, shuffle=False, drop_last=True)
        config_list = prune_config['amc']['config_list']
        pruner = AMCPruner(model, config_list, validate, val_loader, train_episode=1)
        pruner.compress()

chicm-ms's avatar
chicm-ms committed
317
318
319
320
321
322
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,3,32,32))
        filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth']
        for f in filePaths:
            if os.path.exists(f):
                os.remove(f)

chicm-ms's avatar
chicm-ms committed
323
324
if __name__ == '__main__':
    main()