main.py 3.39 KB
Newer Older
SparkSnail's avatar
SparkSnail committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
# documentation files (the "Software"), to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import nni
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn import linear_model
import logging
import numpy as np
from sklearn.metrics import r2_score
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
27
28
29
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lars
from sklearn.linear_model import ARDRegression
SparkSnail's avatar
SparkSnail committed
30
31
32
33
34
35

LOG = logging.getLogger('sklearn_regression')

def load_data():
    '''Load dataset, use boston dataset'''
    boston = load_boston()
36
37
    X_train, X_test, y_train, y_test = train_test_split(
        boston.data, boston.target, random_state=99, test_size=0.25)
SparkSnail's avatar
SparkSnail committed
38
39
40
41
42
43
    #normalize data
    ss_X = StandardScaler()
    ss_y = StandardScaler()

    X_train = ss_X.fit_transform(X_train)
    X_test = ss_X.transform(X_test)
44
45
    y_train = ss_y.fit_transform(y_train[:, None])[:, 0]
    y_test = ss_y.transform(y_test[:, None])[:, 0]
SparkSnail's avatar
SparkSnail committed
46
47
48
49
50

    return X_train, X_test, y_train, y_test

def get_default_parameters():
    '''get default parameters'''
51
    params = {'model_name': 'LinearRegression'}
SparkSnail's avatar
SparkSnail committed
52
53
54
55
56
57
    return params

def get_model(PARAMS):
    '''Get model according to parameters'''
    model_dict = {
        'LinearRegression': LinearRegression(),
58
59
60
61
        'Ridge': Ridge(),
        'Lars': Lars(),
        'ARDRegression': ARDRegression()

SparkSnail's avatar
SparkSnail committed
62
63
64
65
    }
    if not model_dict.get(PARAMS['model_name']):
        LOG.exception('Not supported model!')
        exit(1)
66

SparkSnail's avatar
SparkSnail committed
67
    model = model_dict[PARAMS['model_name']]
68
    model.normalize = bool(PARAMS['normalize'])
69

SparkSnail's avatar
SparkSnail committed
70
71
    return model

72
def run(X_train, X_test, y_train, y_test, model):
SparkSnail's avatar
SparkSnail committed
73
74
75
76
    '''Train model and predict result'''
    model.fit(X_train, y_train)
    predict_y = model.predict(X_test)
    score = r2_score(y_test, predict_y)
77
    LOG.debug('r2 score: %s', score)
SparkSnail's avatar
SparkSnail committed
78
79
80
81
82
83
84
    nni.report_final_result(score)

if __name__ == '__main__':
    X_train, X_test, y_train, y_test = load_data()

    try:
        # get parameters from tuner
chicm-ms's avatar
chicm-ms committed
85
        RECEIVED_PARAMS = nni.get_next_parameter()
SparkSnail's avatar
SparkSnail committed
86
87
88
89
90
91
92
93
94
        LOG.debug(RECEIVED_PARAMS)
        PARAMS = get_default_parameters()
        PARAMS.update(RECEIVED_PARAMS)
        LOG.debug(PARAMS)
        model = get_model(PARAMS)
        run(X_train, X_test, y_train, y_test, model)
    except Exception as exception:
        LOG.exception(exception)
        raise