search.py 3.59 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import logging
import os
import random
from argparse import ArgumentParser
from itertools import cycle

import numpy as np
import torch
import torch.nn as nn

colorjam's avatar
colorjam committed
14
from nni.algorithms.nas.pytorch.enas import EnasMutator, EnasTrainer
Yuge Zhang's avatar
Yuge Zhang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from nni.nas.pytorch.callbacks import LRSchedulerCallback

from dataloader import read_data_sst
from model import Model
from utils import accuracy


logger = logging.getLogger("nni.textnas")


class TextNASTrainer(EnasTrainer):
    def __init__(self, *args, train_loader=None, valid_loader=None, test_loader=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.train_loader = train_loader
        self.valid_loader = valid_loader
        self.test_loader = test_loader

    def init_dataloader(self):
        pass


if __name__ == "__main__":
    parser = ArgumentParser("textnas")
    parser.add_argument("--batch-size", default=128, type=int)
    parser.add_argument("--log-frequency", default=50, type=int)
    parser.add_argument("--seed", default=1234, type=int)
    parser.add_argument("--epochs", default=10, type=int)
    parser.add_argument("--lr", default=5e-3, type=float)
    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    train_dataset, valid_dataset, test_dataset, embedding = read_data_sst("data")
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True)
    valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, num_workers=4, shuffle=True)
    test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=args.batch_size, num_workers=4)
    train_loader, valid_loader = cycle(train_loader), cycle(valid_loader)
    model = Model(embedding)

    mutator = EnasMutator(model, temperature=None, tanh_constant=None, entropy_reduction="mean")

    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, eps=1e-3, weight_decay=2e-6)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.epochs, eta_min=1e-5)

    trainer = TextNASTrainer(model,
                             loss=criterion,
                             metrics=lambda output, target: {"acc": accuracy(output, target)},
                             reward_function=accuracy,
                             optimizer=optimizer,
                             callbacks=[LRSchedulerCallback(lr_scheduler)],
                             batch_size=args.batch_size,
                             num_epochs=args.epochs,
                             dataset_train=None,
                             dataset_valid=None,
                             train_loader=train_loader,
                             valid_loader=valid_loader,
                             test_loader=test_loader,
                             log_frequency=args.log_frequency,
                             mutator=mutator,
                             mutator_lr=2e-3,
                             mutator_steps=500,
                             mutator_steps_aggregate=1,
                             child_steps=3000,
                             baseline_decay=0.99,
                             test_arc_per_epoch=10)
    trainer.train()
    os.makedirs("checkpoints", exist_ok=True)
    for i in range(20):
        trainer.export(os.path.join("checkpoints", "architecture_%02d.json" % i))