tester.py 4.67 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import argparse
import logging
import random
import time
from itertools import cycle

import nni
import numpy as np
import torch
import torch.nn as nn
colorjam's avatar
colorjam committed
14
from nni.algorithms.nas.pytorch.classic_nas import get_and_apply_next_architecture
Yuge Zhang's avatar
Yuge Zhang committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from nni.nas.pytorch.utils import AverageMeterGroup

from dataloader import get_imagenet_iter_dali
from network import ShuffleNetV2OneShot, load_and_parse_state_dict
from utils import CrossEntropyLabelSmooth, accuracy

logger = logging.getLogger("nni.spos.tester")


def retrain_bn(model, criterion, max_iters, log_freq, loader):
    with torch.no_grad():
        logger.info("Clear BN statistics...")
        for m in model.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.running_mean = torch.zeros_like(m.running_mean)
                m.running_var = torch.ones_like(m.running_var)

        logger.info("Train BN with training set (BN sanitize)...")
        model.train()
        meters = AverageMeterGroup()
        for step in range(max_iters):
            inputs, targets = next(loader)
            logits = model(inputs)
            loss = criterion(logits, targets)
            metrics = accuracy(logits, targets)
            metrics["loss"] = loss.item()
            meters.update(metrics)
            if step % log_freq == 0 or step + 1 == max_iters:
                logger.info("Train Step [%d/%d] %s", step + 1, max_iters, meters)


def test_acc(model, criterion, log_freq, loader):
    logger.info("Start testing...")
    model.eval()
    meters = AverageMeterGroup()
    start_time = time.time()
    with torch.no_grad():
        for step, (inputs, targets) in enumerate(loader):
            logits = model(inputs)
            loss = criterion(logits, targets)
            metrics = accuracy(logits, targets)
            metrics["loss"] = loss.item()
            meters.update(metrics)
            if step % log_freq == 0 or step + 1 == len(loader):
                logger.info("Valid Step [%d/%d] time %.3fs acc1 %.4f acc5 %.4f loss %.4f",
                            step + 1, len(loader), time.time() - start_time,
                            meters.acc1.avg, meters.acc5.avg, meters.loss.avg)
    return meters.acc1.avg


def evaluate_acc(model, criterion, args, loader_train, loader_test):
    acc_before = test_acc(model, criterion, args.log_frequency, loader_test)
    nni.report_intermediate_result(acc_before)

    retrain_bn(model, criterion, args.train_iters, args.log_frequency, loader_train)
    acc = test_acc(model, criterion, args.log_frequency, loader_test)
    assert isinstance(acc, float)
    nni.report_intermediate_result(acc)
    nni.report_final_result(acc)


if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Candidate Tester")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--checkpoint", type=str, default="./data/checkpoint-150000.pth.tar")
    parser.add_argument("--spos-preprocessing", action="store_true", default=False,
                        help="When true, image values will range from 0 to 255 and use BGR "
                             "(as in original repo).")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--workers", type=int, default=6)
    parser.add_argument("--train-batch-size", type=int, default=128)
    parser.add_argument("--train-iters", type=int, default=200)
    parser.add_argument("--test-batch-size", type=int, default=512)
    parser.add_argument("--log-frequency", type=int, default=10)

    args = parser.parse_args()

    # use a fixed set of image will improve the performance
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    assert torch.cuda.is_available()

    model = ShuffleNetV2OneShot()
    criterion = CrossEntropyLabelSmooth(1000, 0.1)
    get_and_apply_next_architecture(model)
    model.load_state_dict(load_and_parse_state_dict(filepath=args.checkpoint))
    model.cuda()

    train_loader = get_imagenet_iter_dali("train", args.imagenet_dir, args.train_batch_size, args.workers,
                                          spos_preprocessing=args.spos_preprocessing,
                                          seed=args.seed, device_id=0)
    val_loader = get_imagenet_iter_dali("val", args.imagenet_dir, args.test_batch_size, args.workers,
                                        spos_preprocessing=args.spos_preprocessing, shuffle=True,
                                        seed=args.seed, device_id=0)
    train_loader = cycle(train_loader)

    evaluate_acc(model, criterion, args, train_loader, val_loader)