supernet.py 3.9 KB
Newer Older
Yuge Zhang's avatar
Yuge Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
from nni.nas.pytorch.callbacks import LRSchedulerCallback
from nni.nas.pytorch.callbacks import ModelCheckpoint
colorjam's avatar
colorjam committed
13
from nni.algorithms.nas.pytorch.spos import SPOSSupernetTrainingMutator, SPOSSupernetTrainer
Yuge Zhang's avatar
Yuge Zhang committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

from dataloader import get_imagenet_iter_dali
from network import ShuffleNetV2OneShot, load_and_parse_state_dict
from utils import CrossEntropyLabelSmooth, accuracy

logger = logging.getLogger("nni.spos.supernet")

if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Supernet Training")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--load-checkpoint", action="store_true", default=False)
    parser.add_argument("--spos-preprocessing", action="store_true", default=False,
                        help="When true, image values will range from 0 to 255 and use BGR "
                             "(as in original repo).")
    parser.add_argument("--workers", type=int, default=4)
    parser.add_argument("--batch-size", type=int, default=768)
    parser.add_argument("--epochs", type=int, default=120)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    model = ShuffleNetV2OneShot()
48
    flops_func = model.get_candidate_flops
Yuge Zhang's avatar
Yuge Zhang committed
49
50
51
52
53
54
55
    if args.load_checkpoint:
        if not args.spos_preprocessing:
            logger.warning("You might want to use SPOS preprocessing if you are loading their checkpoints.")
        model.load_state_dict(load_and_parse_state_dict())
    model.cuda()
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
56
    mutator = SPOSSupernetTrainingMutator(model, flops_func=flops_func,
Yuge Zhang's avatar
Yuge Zhang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
                                          flops_lb=290E6, flops_ub=360E6)
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lambda step: (1.0 - step / args.epochs)
                                                  if step <= args.epochs else 0,
                                                  last_epoch=-1)
    train_loader = get_imagenet_iter_dali("train", args.imagenet_dir, args.batch_size, args.workers,
                                          spos_preprocessing=args.spos_preprocessing)
    valid_loader = get_imagenet_iter_dali("val", args.imagenet_dir, args.batch_size, args.workers,
                                          spos_preprocessing=args.spos_preprocessing)
    trainer = SPOSSupernetTrainer(model, criterion, accuracy, optimizer,
                                  args.epochs, train_loader, valid_loader,
                                  mutator=mutator, batch_size=args.batch_size,
                                  log_frequency=args.log_frequency, workers=args.workers,
                                  callbacks=[LRSchedulerCallback(scheduler),
                                             ModelCheckpoint("./checkpoints")])
    trainer.train()