retrain.py 11.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
# Written by Hao Du and Houwen Peng
# email: haodu8-c@my.cityu.edu.hk and houwen.peng@microsoft.com

import os
import warnings
import datetime
import torch
import numpy as np
import torch.nn as nn

from torchscope import scope
from torch.utils.tensorboard import SummaryWriter

# import timm packages
from timm.optim import create_optimizer
from timm.models import resume_checkpoint
from timm.scheduler import create_scheduler
from timm.data import Dataset, create_loader
from timm.utils import ModelEma, update_summary
from timm.loss import LabelSmoothingCrossEntropy

# import apex as distributed package
try:
    from apex import amp
    from apex.parallel import DistributedDataParallel as DDP
    from apex.parallel import convert_syncbn_model
    HAS_APEX = True
except ImportError:
    from torch.nn.parallel import DistributedDataParallel as DDP
    HAS_APEX = False

# import models and training functions
from lib.core.test import validate
from lib.core.retrain import train_epoch
from lib.models.structures.childnet import gen_childnet
from lib.utils.util import parse_config_args, get_logger, get_model_flops_params
from lib.config import DEFAULT_CROP_PCT, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD


def main():
    args, cfg = parse_config_args('nni.cream.childnet')

    # resolve logging
    output_dir = os.path.join(cfg.SAVE_PATH,
                              "{}-{}".format(datetime.date.today().strftime('%m%d'),
                                             cfg.MODEL))
    if not os.path.exists(output_dir):
        os.mkdir(output_dir)

    if args.local_rank == 0:
        logger = get_logger(os.path.join(output_dir, 'retrain.log'))
        writer = SummaryWriter(os.path.join(output_dir, 'runs'))
    else:
        writer, logger = None, None

    # retrain model selection
    if cfg.NET.SELECTION == 481:
        arch_list = [
            [0], [
                3, 4, 3, 1], [
                3, 2, 3, 0], [
                3, 3, 3, 1], [
                    3, 3, 3, 3], [
                        3, 3, 3, 3], [0]]
        cfg.DATASET.IMAGE_SIZE = 224
    elif cfg.NET.SELECTION == 43:
        arch_list = [[0], [3], [3, 1], [3, 1], [3, 3, 3], [3, 3], [0]]
        cfg.DATASET.IMAGE_SIZE = 96
    elif cfg.NET.SELECTION == 14:
        arch_list = [[0], [3], [3, 3], [3, 3], [3], [3], [0]]
        cfg.DATASET.IMAGE_SIZE = 64
    elif cfg.NET.SELECTION == 112:
        arch_list = [[0], [3], [3, 3], [3, 3], [3, 3, 3], [3, 3], [0]]
        cfg.DATASET.IMAGE_SIZE = 160
    elif cfg.NET.SELECTION == 287:
        arch_list = [[0], [3], [3, 3], [3, 1, 3], [3, 3, 3, 3], [3, 3, 3], [0]]
        cfg.DATASET.IMAGE_SIZE = 224
    elif cfg.NET.SELECTION == 604:
        arch_list = [
            [0], [
                3, 3, 2, 3, 3], [
                3, 2, 3, 2, 3], [
                3, 2, 3, 2, 3], [
                    3, 3, 2, 2, 3, 3], [
                        3, 3, 2, 3, 3, 3], [0]]
        cfg.DATASET.IMAGE_SIZE = 224
    elif cfg.NET.SELECTION == -1:
        arch_list = cfg.NET.INPUT_ARCH
        cfg.DATASET.IMAGE_SIZE = 224
    else:
        raise ValueError("Model Retrain Selection is not Supported!")

    # define childnet architecture from arch_list
    stem = ['ds_r1_k3_s1_e1_c16_se0.25', 'cn_r1_k1_s1_c320_se0.25']
    choice_block_pool = ['ir_r1_k3_s2_e4_c24_se0.25',
                         'ir_r1_k5_s2_e4_c40_se0.25',
                         'ir_r1_k3_s2_e6_c80_se0.25',
                         'ir_r1_k3_s1_e6_c96_se0.25',
                         'ir_r1_k3_s2_e6_c192_se0.25']
    arch_def = [[stem[0]]] + [[choice_block_pool[idx]
                               for repeat_times in range(len(arch_list[idx + 1]))]
                              for idx in range(len(choice_block_pool))] + [[stem[1]]]

    # generate childnet
    model = gen_childnet(
        arch_list,
        arch_def,
        num_classes=cfg.DATASET.NUM_CLASSES,
        drop_rate=cfg.NET.DROPOUT_RATE,
        global_pool=cfg.NET.GP)

    # initialize training parameters
    eval_metric = cfg.EVAL_METRICS
    best_metric, best_epoch, saver = None, None, None

    # initialize distributed parameters
    distributed = cfg.NUM_GPU > 1
    torch.cuda.set_device(args.local_rank)
    torch.distributed.init_process_group(backend='nccl', init_method='env://')
    if args.local_rank == 0:
        logger.info(
            'Training on Process {} with {} GPUs.'.format(
                args.local_rank, cfg.NUM_GPU))

    # fix random seeds
    torch.manual_seed(cfg.SEED)
    torch.cuda.manual_seed_all(cfg.SEED)
    np.random.seed(cfg.SEED)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False

    # get parameters and FLOPs of model
    if args.local_rank == 0:
        macs, params = get_model_flops_params(model, input_size=(
            1, 3, cfg.DATASET.IMAGE_SIZE, cfg.DATASET.IMAGE_SIZE))
        logger.info(
            '[Model-{}] Flops: {} Params: {}'.format(cfg.NET.SELECTION, macs, params))

    # create optimizer
    optimizer = create_optimizer(cfg, model)
    model = model.cuda()

    # optionally resume from a checkpoint
    resume_state, resume_epoch = {}, None
    if cfg.AUTO_RESUME:
        resume_state, resume_epoch = resume_checkpoint(model, cfg.RESUME_PATH)
        optimizer.load_state_dict(resume_state['optimizer'])
        del resume_state

    model_ema = None
    if cfg.NET.EMA.USE:
        model_ema = ModelEma(
            model,
            decay=cfg.NET.EMA.DECAY,
            device='cpu' if cfg.NET.EMA.FORCE_CPU else '',
            resume=cfg.RESUME_PATH if cfg.AUTO_RESUME else None)

    if distributed:
        if cfg.BATCHNORM.SYNC_BN:
            try:
                if HAS_APEX:
                    model = convert_syncbn_model(model)
                else:
                    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(
                        model)
                if args.local_rank == 0:
                    logger.info(
                        'Converted model to use Synchronized BatchNorm.')
            except Exception as e:
                if args.local_rank == 0:
                    logger.error(
                        'Failed to enable Synchronized BatchNorm. Install Apex or Torch >= 1.1 with exception {}'.format(e))
        if HAS_APEX:
            model = DDP(model, delay_allreduce=True)
        else:
            if args.local_rank == 0:
                logger.info(
                    "Using torch DistributedDataParallel. Install NVIDIA Apex for Apex DDP.")
            # can use device str in Torch >= 1.1
            model = DDP(model, device_ids=[args.local_rank])

    # imagenet train dataset
    train_dir = os.path.join(cfg.DATA_DIR, 'train')
    if not os.path.exists(train_dir) and args.local_rank == 0:
        logger.error('Training folder does not exist at: {}'.format(train_dir))
        exit(1)
    dataset_train = Dataset(train_dir)
    loader_train = create_loader(
        dataset_train,
        input_size=(3, cfg.DATASET.IMAGE_SIZE, cfg.DATASET.IMAGE_SIZE),
        batch_size=cfg.DATASET.BATCH_SIZE,
        is_training=True,
        color_jitter=cfg.AUGMENTATION.COLOR_JITTER,
        auto_augment=cfg.AUGMENTATION.AA,
        num_aug_splits=0,
        crop_pct=DEFAULT_CROP_PCT,
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD,
        num_workers=cfg.WORKERS,
        distributed=distributed,
        collate_fn=None,
        pin_memory=cfg.DATASET.PIN_MEM,
        interpolation='random',
        re_mode=cfg.AUGMENTATION.RE_MODE,
        re_prob=cfg.AUGMENTATION.RE_PROB
    )

    # imagenet validation dataset
    eval_dir = os.path.join(cfg.DATA_DIR, 'val')
    if not os.path.exists(eval_dir) and args.local_rank == 0:
        logger.error(
            'Validation folder does not exist at: {}'.format(eval_dir))
        exit(1)
    dataset_eval = Dataset(eval_dir)
    loader_eval = create_loader(
        dataset_eval,
        input_size=(3, cfg.DATASET.IMAGE_SIZE, cfg.DATASET.IMAGE_SIZE),
        batch_size=cfg.DATASET.VAL_BATCH_MUL * cfg.DATASET.BATCH_SIZE,
        is_training=False,
        interpolation=cfg.DATASET.INTERPOLATION,
        crop_pct=DEFAULT_CROP_PCT,
        mean=IMAGENET_DEFAULT_MEAN,
        std=IMAGENET_DEFAULT_STD,
        num_workers=cfg.WORKERS,
        distributed=distributed,
        pin_memory=cfg.DATASET.PIN_MEM
    )

    # whether to use label smoothing
    if cfg.AUGMENTATION.SMOOTHING > 0.:
        train_loss_fn = LabelSmoothingCrossEntropy(
            smoothing=cfg.AUGMENTATION.SMOOTHING).cuda()
        validate_loss_fn = nn.CrossEntropyLoss().cuda()
    else:
        train_loss_fn = nn.CrossEntropyLoss().cuda()
        validate_loss_fn = train_loss_fn

    # create learning rate scheduler
    lr_scheduler, num_epochs = create_scheduler(cfg, optimizer)
    start_epoch = resume_epoch if resume_epoch is not None else 0
    if start_epoch > 0:
        lr_scheduler.step(start_epoch)
    if args.local_rank == 0:
        logger.info('Scheduled epochs: {}'.format(num_epochs))

    try:
        best_record, best_ep = 0, 0
        for epoch in range(start_epoch, num_epochs):
            if distributed:
                loader_train.sampler.set_epoch(epoch)

            train_metrics = train_epoch(
                epoch,
                model,
                loader_train,
                optimizer,
                train_loss_fn,
                cfg,
                lr_scheduler=lr_scheduler,
                saver=saver,
                output_dir=output_dir,
                model_ema=model_ema,
                logger=logger,
                writer=writer,
                local_rank=args.local_rank)

            eval_metrics = validate(
                epoch,
                model,
                loader_eval,
                validate_loss_fn,
                cfg,
                logger=logger,
                writer=writer,
                local_rank=args.local_rank)

            if model_ema is not None and not cfg.NET.EMA.FORCE_CPU:
                ema_eval_metrics = validate(
                    epoch,
                    model_ema.ema,
                    loader_eval,
                    validate_loss_fn,
                    cfg,
                    log_suffix='_EMA',
                    logger=logger,
                    writer=writer)
                eval_metrics = ema_eval_metrics

            if lr_scheduler is not None:
                lr_scheduler.step(epoch + 1, eval_metrics[eval_metric])

            update_summary(epoch, train_metrics, eval_metrics, os.path.join(
                output_dir, 'summary.csv'), write_header=best_metric is None)

            if saver is not None:
                # save proper checkpoint with eval metric
                save_metric = eval_metrics[eval_metric]
                best_metric, best_epoch = saver.save_checkpoint(
                    model, optimizer, cfg,
                    epoch=epoch, model_ema=model_ema, metric=save_metric)

            if best_record < eval_metrics[eval_metric]:
                best_record = eval_metrics[eval_metric]
                best_ep = epoch

            if args.local_rank == 0:
                logger.info(
                    '*** Best metric: {0} (epoch {1})'.format(best_record, best_ep))

    except KeyboardInterrupt:
        pass

    if best_metric is not None:
        logger.info(
            '*** Best metric: {0} (epoch {1})'.format(best_metric, best_epoch))


if __name__ == '__main__':
    main()